Amsterdam Soil Moisture Workshop Friday July 11, 2014

A study towards the Integration of SMOS Soil Moisture in a Consistent Climate Record

<u>Richard de Jeu¹</u>, Jean Pierre Wigneron², Yann Kerr³, Matthias Drusch⁴, Robin van der Schalie¹, Amen Al Yaari², and Nemesio Rodriguez³

1 VU University Amsterdam, 2, INRA, 3 CESBIO, 4 ESA

Outline

- Introduction / Rationale
- Methods
- First Results
- Conclusions
- Future

Within the ESA CCI program (phase 1) a 35+ year soil moisture record has been developed

Record is based on passive and active microwave satellite data sets (see pres. Dorigo et al. (Thu))

SMOS is not yet part of this record !

In ESA CCI Phase II, SMOS should become part of this record

Introduction / Rationale

SMOS can give an important contribution to the CCI SMOS can be complementary towards the other sensors

Corr. between AMSR/SMOS and Soil moisture from ECMWF

Al Yaari et al., RSE, 2014

vrije Universiteit amsterdam 📕

Microwave Soil Moisture Data Fusion ESA EXPRO+ project (1 year project)

Joint project: VUA, INRA, CESBIO

<u>Objective:</u> provide guidelines for the further development of an ECV soil moisture product

Methods

Study plan:

Design and implementation of 3 different data fusion approaches for passive microwave observations using SMOS L3 (2010-2013) and AMSR-E L2 (2003-2011) over a 10 year period.

Evaluate the performance of the 3 approaches with predefined statistical metrics.

Methods

Methods: 1) NN Fusion (CESBIO)

- Train SMOS_NN in 2013 using SMOS TBs as input and either ECMWF
 SSM or SMOS L3 SSM as reference
- Apply SMOS_NN to SMOS TBs in 2010-2011 \rightarrow output SMOS_NN(SSM)
- Use this SMOS_NN(SSM) to train AMSRE_NN with AMSR-E TBs as input in 2010-2011
- Apply AMSRE_NN to AMSR-E TBs in the period 2003-2009 \rightarrow output AMRSE_NN(SSM)

vrile Universiteit amsterdi

Methods: 1) NN Fusion (CESBIO)

Alternatively:

- Explore AMSR-E and SMOS synergy in 2010-2011 to train AMSRE_SMOS_NN with respect to ECMWF(SSM) to generate AMSRE_SMOS_NN(SSM)
- Use AMSRE_SMOS_NN(SSM) as SSM reference to train AMSRE_NN in 2010-2011
- Use AMSRE_NN in the 2002-2009 period to compute AMSRE(SSM)

Methods: 2) Regression Fusion (INRA)

Methods: 2) Regression Fusion (INRA)

From presentation : A. Al Yaari, IGARSS_2014

vrije Universiteit amsterdam

Methods: 3) LPRM Fusion (VUA)

- Apply the Land Parameter retrieval Model (LPRM)* on SMOS L3 and AMSR-L2 data
- Use the derived internal dielectric constants of SMOS and AMSR to merge the two datasets
- Try to avoid the use of ancillary data (e.g. land cover maps, LAI, soil maps)

De Jeu et al., JoH, 2014

*²PRM is the baseline algorithm in CCI phase I

vrije Universiteit ansterdam

Methods: 3) LPRM Fusion (VUA)

Why dielectric constant: No ancillary data needed Large part is linear related with soil moisture Holds soil property info

De Jeu et al., JoH, 2014

Methods: Evaluation

 Validation with In Situ data (standard metrics > Yann's Talk)

- Two global Evaluations
 - R-value Method (Parinussa et al., HESS, 2011)
 - Tripple Collocation Method (Dorigo et al., HESS, 2010)

First Results (Method 1)

- \cdot SMOS_NN has been computed and trained with ECMWF SSM and SMOS L3 SSM
- \cdot The NN captures the temporal and spatial variability of SSM
- \cdot Validation against USDA SCAN sites gives the best statistics in comparison with ECMWF and SMOS L3 SSM \rightarrow This product will be used as reference to train AMSRE_NN

Rodriguez-Fernandez et al. IGARSS_2014

vrije Universiteit 🛛 amsterdam 🕺

-2

-3

First Results (Method 2)

AMSR_REG /MERRA-Land

AMSR_LPRM/ MERRA-Land

First Results (Method 3)

LPRM applied to SMOS over in situ sites of the Murrumbidgee catchment Period: 2010-2011 Stations: 49 grouped in 17 cells (Su et al., 2013)

	Product	R	RMSE	bias	Ν	N
0.5 E	45d LPRM	0.69	0.11	-0.01	1331	1331 1331
θ [m3/	SMOSL3	0.75	0.09	0	1331	1423 1423
0.5 _[52.5d LPRM	0.70	0.09	-0.02	1423	1338 1338
[m3/m3]	SMOSL3	0.71	0.09	-0.01	1423	1151
θ	60 d LPRM	0.73	0.10	-0.01	1338	1151
0.5 [E	SMOSL3	0.76	0.09	-0.01	1338	1115
θ [m3]	MM Min Min Marine Marine		SMOS L3 regrid	0.75 ± 0.47 0.080	-0.02	896 896

Van der Schalie et al., RSE in review

First Results (method 3)

Spatial correspondence SMOS L3 and SMOS_LPRM

SMOS LPRM (1-7 Aug, 2010)

First Results (method 3)

Spatial correspondence SMOS L3 and SMOS_LPRM Scatter density plots (Y axis SMOSL3, X axis SMOS LPRM)

First Results (method 3)

Dielectric constant (K) MOS L3 and SMOS_LPRM, AMSR-E,1-7 Aug2010

AMSR-E (K)

SMOS L3 (K)

SMOS LPRM (K)

vrije Universiteit amsterdam

Data Fusion project for SMOS integration in the CCI just started

3 Fusion methods will be tested

First results show the potential of all three different methods

Future

Next steps

- Further development Fusion approaches
- Delivery of 10 year (2003-2013) merged datasets
- Evaluation datasets
- Guidelines CCI

