

SMOS Land products developments and applications

Yann Kerr (CESBIO) and the ESL's Steven Delwart, Matthias Drush and susanne <u>Mecklenburg</u>

Soil Moisture workshop Amsterdam July 10-11 2014 YH Kerr

2

Soil Moisture workshop Amsterdam July 10-11 2014 YH Kerr

Layout

- **q** SMOS status
- **q** Some results
- **q** Conclusion and way forward

SMOS Principle and key points

- 2D L band Interferometric fully polarimetric radiometer
- Complete coverage of the globe in less than 3 days at both 6 am and 6 pm and multiangular acquisitions
- 43 km average (real) resolution
- Estimates of
 - Soil moisture, Vegetation opacity
 - Sea surface salinity
 - Wind speed (Hurricane)
 - Thin sea ice
 - drought, RZM
 -
- Launched november 2 2009

SMOS Principle and key points

CESBID

5

A few facts

- **q** SMOS has now cumulated more than 4 years in operation (Jan 2010 to now)
- **q** SMOS Extension for two years granted
- **q** Operational Near real time Tb data disseminated
- **q** Operational SM to be implemented at ECMWF
- **q** Operational users of the data (latest is USDA)
- **q** Pre operational products under test
- **q** New products
 - ▼ Release of V620 this fall (ESA L1-L2) or now (CATDS L3)
 - o Improved L1
 - \circ Improved L2 / L3
 - **v** Level 4
 - o Drought index
 - o Root zone soil moisture
 - Precip, floods etc...
- **q** SMAP to be launched this November

Reprocessing

SMOS actually planning 2nd full mission reprocessing on v620.
L1 available next fall, L2 next winter.
Based on preliminary results bias at Dome C down to below 1K
Aquarius soon distributing v3.0.

Cabot F.

	SMOS		Aquarius		Bias Aquarius-SMOS		Inter Version bias	
	V504	V611beta	V2.0	V2.7.1	V2.0/V504 V2.7.	1/V611	SMOS (v611-v504)	Aquarius (v271-v2)
ΗΓ	202,16	205,40	207,87	206,16	5,71	0,76	3,24	-1,71
V	189,40	192,78	195,62	193,07	6,22	0,29	3,38	-2,55
н	208,70	210,57	212,43	210,65	3,73	0,08	1,87	-1,78
V	186,99	188,86	192,15	189,38	5,16	0,52	1,87	-2,77
н	211 22	213 88	215 63	213 68	4 41	-0 20	2,66	-1,95
V	182,04	184,91	187,47	185,14	5,43	0,23	2,87	-2,33
				L				

Cal val : Many in situ datasets

Cal Val Metrics?

- **q** Correlation coefficient or RMSE?
- **q** Temporal or spatial?
- **q** A couple of provocative examples

Satistics – the solution?

- **q** Temporal evolution or statistics
 - ▼ 11 measurements ... which is the best (Ascombe quartet)

http://www.tylervigen.com

Bias

What do we need?

- **q** Some common sense first
- **q** Some reliable and characterised in situ data
- **q** A panoply of tools
- **q** Some mastering of statistics
- **q** And a close look

Standard deviation

Little Washita

Climate : sub humid Topography : rolling Land use : range, wheat

Jackson et al., Validation of AMSR soil moisture products, IEEE Transactions on Geoscience and Remote Sensing, vol. 48, 2010.

Global Comparison between SMOS-L3 and AMSR surface soil moisture with SSM calculated by SM-DAS-2.

R coeff. SM Anomalies (34 day window)

Correlation of SMOSL3 and ASCAT SM vs MERRA/land SM product (P value < 0.05) 2010–2012 period (Anomalies)

ASCAT: Global R=0.22 SMOS: Global R=0.29

A. Alyaari

NN retrievals

Juillet 2010

- Somewhat drier than ECMWF

Evidence of possitive bias of ECMWF

- Muñoz-Sabater et al. (in prep)

- Albergel et al. 2012

N Rodriguez

Little Washita

N Rodriguez

Different disaggregation schemes

- **q** SMAP
 - ▼ à N Das et al approach
 - ▼ yesterday's presentation by Dara
 - ✔ Yesterday's presentation by Jeff
- **q** Using Thermal and Infra red
 - ✔ Yesterday's presentation by Maria-Jo
- **q** With sparse active microwaves
 - ▼ Radar every so often
 - ▼ Sat Kumar et al approach

Active Passive disaggregation (S Tomer)

L4: Combined high resolution active and passive Microwave soil moisture product

Spatio-temporal disaggregation

Validation of downscaled SMOS soil moisture with respect to RADARSAT-2 soil moisture

Validation of downscaled SMOS soil moisture with respect to RADARSAT-2 soil moisture

Global Map of retrieved optical thickness

15

0.3

0.1

For reference: Forest height estimated by GLAS-ICESat Lidar (Simard et al., 2011)

MOS

26 Planning Meeting – ISSI Bern – December 18-19 2013 YH Kerr And Global map of Soil moisture

SMOS+Hydro Project

Sat Kumar Tomer, Ahmad Al Bitar, Olivier Merlin, Yann Kerr Centre d'Etudes Spatiales de la Biosphere, 31401 Toulouse, France

Hans Lievens, Niko Verhoest

Laboratory of Hydrology and Water Management, Ghent University, 9000 Ghent, Belgium

Valentijn Pauwels, Jeffrey Walker, Gift Dumedah Department of Civil Engineering, Monash University, 3800 Victoria, Australia

Eric Wood, Ming Pan, Alok Sahoo Land Surface Hydrology Group, Princeton University, 08544 Princeton, USA

Gabrielle De Lannoy, Rolf Reichle Global Modeling & Assimilation Office, NASA Goddard Space Flight Center, 20770 Greenbelt, USA

> Matthias Drusch European Space Agency, 2200 AG Noordwijk, The Netherlands

- Assimilation of SMOS data into VIC model to improve the flood prediction
 - Soil moisture
 - Coarse scale
 - Fine scale
 - Temperature brightness
- Streamflow routing
- Test the model setup at two different basins UMB (humid) and MDB (arid)

Assimilation results

Ø Soil moisture assimilation is enhancing the streamflow except the peak flow

Estimated SSM without SMOS assimilation (Benin site) Using TRMM-3B42 (top) and CMORPH rainfall products (bottom)

T. Pellarin

Estimated SSM with SMOS assimilation (Benin site) Using TRMM-3B42 (top) and CMORPH rainfall products (bottom)

T. Pellarin

CESBID

Root zone soil moisture

Figure 1: Annual mean root-zone soil moisture maps for MERRA, H14, GL-SWI and SMOS.

Pellarin et al

Soil moisture sensor calibration

Bircher et al

Increasing ഗ NO Increasing

SOM

Calibration curves fitted through organic data, to be used for recalibration of in situ soil moisture of automatic network stations

à Mineral calibration curve as f(SOM) possible if further data acquired...

SMOS 2STREAMAP STUDY (SMOS 2S)

Worbstr. 225, CH-3073 Gümligen, Switzerland http://www.gamma-rs.ch/

³⁵ Soil Moisture workshop Amsterdam July 10-1, 2014 TR Nerr page 35 SMOS 2S Study: Overview on the Project Status

SMOS 2S Project Overview

Major Project Goals:

- Exploring the potential of replacing the t w(TO) RT model used in the SMOS L2 SM processor with the Two-Stream (2S) Radiative Transfer (RT) model.
- SMOS 2S study shall allow taking the decision on a possible implementation of the proposed retrieval update in the operational SMOS SM retrieval.

Pros of 2S RT over TO RT model:

1) 2S RT considers multiple reflections (higher order solution of RT equations).

- 2) "soft-layer" ($s_1=0$, $q=q_1$) assumption can be given up. "hard-layer" ($s_1>0$, $q>q_1$) necessary for e.g. soil beneath snow / litter.
 - 3) 2S RT allows to represent multiple layered systems.
 - 4) All this is relevant to advance full exploitation of SMOS TB (novel data products).

Comparative 3-P Retrieval Based on FOSMEX T_B^p(q)

3-P retrievals:

³⁷ Soil Moisture workshop Amsterdam July 10-11, 2014 YH Kerr page 37 SMOS 2S Study: Overview on the Project Status

Comparative 3-P Retrieval Based on FOSMEX T_BP(q)

• Footprints observed are:

between 2000 m² and 6000 m² for the $q_k = 46^{\circ}$, 50°, 54°, 58° considered.

- Deciduous forest comprising oak, birch, and beech:
 - tree age: 40 80 years
 - average crown height 24 m.
 - column density (dry) » 15 kg m⁻².
 - max. fresh leave density » 1.14 kg m⁻²
- Configurations applied to the original retrieval and the updated retrieval scheme

		retrieve	d para	meters P _i :	constant parameters Pconst:		
	Pi	P iguess	Pi ^s	P constrain	P const	value	
	WC	0.2	0.2	0.0 £ WC £ 1.0	$tt_{\rm H} = r_{\rm ttHV}$	1.0	
	<i>t</i> *	0.8	0.5	0.0 £ <i>t</i> * £ 2.5	Dw [*]	0.0	
	Ŵ	0.2	0.2	0.0 £ w* £ 1.0	Tveg. & Tground	data shown	
				$X_{A} = X_{B}$	0.3		
å (1	$T_{\rm p,km}^{p}$ - $T_{\rm r}$	$\left(\frac{p}{p}\right)^2$	clay	0.160			
$CF = \frac{p=H,V;q_k}{Q}$	В,к,ш 1	b , <i>k</i> ,s j	Q _H	0.0			
	$\left(T_{\rm P}^{s}\right)^{2}$	#	A para. <i>i</i>	$\left(P_{i}^{s}\right)^{2}$	$N_{\rm RV} = N_{\rm RH}$	0.0	
	Ъ				$H_{\rm R}$	1.2	
measured	sir	nulated					

Summary

- **q** After several years in orbit **SMOS**, is behaving very well
- **q** SMOS as still **room for improvement**s and is **evolving very positively**
 - ▼ Significant improvement in calibration and retrieval algorithms
 - ▼ Significant reprocessing efforts soon underway
 - Intercomparisons à Not a beauty contest but a base to learn and understand more
- **q** First applications are very interesting
 - ▼ Many of them
 - ✔ Identification of research areas
- **q** Getting ready to bridging with SMAP and establish long term data sets
- **q** Synergistic approaches studies (AMSR, ASCAT, GCOM-W, Aquarius...)
- **q** Next Step is the elaboration of an **Essential Climate Variable** by bridging several datasets

Example of Tropical storm Nov 2013

visit http://www.cesbio.ups-tlse.fr/SMOS_blog/

Thank you for your patience Any questions?

