Toward assimilation of satellite soil moisture products over Europe

William A. Lahoz¹, Tove M. Svendby¹, Alexandra Griesfeller¹

¹ NILU, Kjeller, Norway (wal<u>@nilu.no</u>)

Satellite Soil Moisture Validation & Application Workshop VU-Amsterdam, 10-11 July 2014

Work done within the ESA CCI Soil Moisture Project

To not...

« A system that makes no errors is not intelligent »

« Risk Savvy », Gerd Gigerenzer

Outline

- Information: satellite data & model data
 - Satellite data: AMSR-E (VUA-LPRM), ASCAT (TU-Wien), SMOS (SMOS data
 - centre) focus on July 2011
 - Model: SURFEX (v7.1)
 - Scaling satellite data
 - Combine: land surface data assimilation, DA (NILU EnKF system)
- DA experiments
 - Self-consistency tests; estimate of observational errors
 - Tests of methodology observation & model errors
- First results
- Conclusions & future work

Overarching objective of data assimilation effort

- Provide the best estimate of soil moisture fields, including error characteristics, and use this information to improve our understanding of the hydrological cycle over land. In particular, to improve:
 - Weather forecasts
 - Hydrology forecasts
 - Simulation of the hydrological cycle over land, for weather and climate studies
 - Monitoring of the hydrological cycle over land

Observation types

Observing land component of Earth System - characteristics:
 Heterogeneous; non-Gaussian errors; non-linearity; relatively long memory; 1-D (affects way we treat information about the land)

•Observation types & spatio-temporal characteristics •Remote sensing: satellites

OGlobal coverage: good representativity for a large area
 Relatively low temporal resolution: 2 obs/day for a LEO
 Relatively low spatial resolution: footprint of ~40 km for SMOS

•In situ: point-based measurements

Local coverage: poor representativity for a large area
 Relatively high temporal resolution: typically minutes
 Relatively high spatial resolution: typically metres
 Observations have errors: random, systematic, representativeness

Issues with soil moisture observations

•Different spatial scales:

- In situ data: point measurements
- Satellite data represent an integrated area, resolution ~40-50 km Error of representativeness (horizontal)

Microwave measurements only sensitive to first cm of surface layer
 ~ 5 cm depth
 L-band (SMOS)
 ~ 1 cm depth
 C-band (ASCAT, AMSR-E)
 ~ few mm depth
 X-band (AMSR-E)

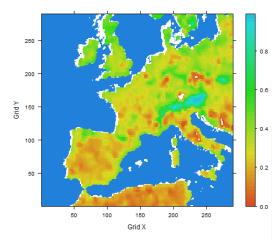
In situ network (e.g. Norway) measures soil moisture at 10 cm

What is being measured?

Match scales and integrated quantities: model, DA

Satellites

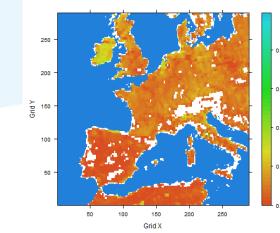
EOS Aqua	AMSR-E passive nicrowave (rad frequencies: 6.9 - 89.0 GHz, spat - 10 km, soil moisture: X-/C-band	AQUA	
	up to 30 km resolution)	few mm	
Metop-A	ASCAT : active microwave (radar) ESA's ERS-1 and ERS-2, 5.26 G spatial resolution: 25 km		метор
	SMOS : MIRAS passive microway (L-band), spatial resolution: 40 kr		and the second
Courtesy G. De Lannoy			AND A
\frown			


Reconcile measurements & model – focus on anomalies

Satellite data

ASCAT converted to m^3m^{-3} using % -> (0,1) Assumes max/min values are 100%, 0% (approx.)

0.8


AMSRE non-corrected mean soil moisture (m3/m3), July 2011

250 200 0.6 , 150 J 0.4 100 0.2 50 150 200 250 100 Grid X

ASCAT non-corrected mean soil moisture (m3/m3), July 2011


SMOS non-corrected mean soil moisture (m3/m3), July 2011

Satellite information – unscaled, July – top: mean; bottom: std

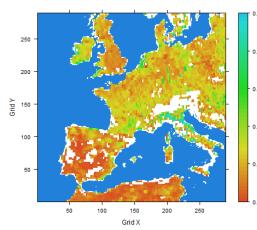
ASCAT std July

AMSRE std July

Grid Y

50 ·

0.20


0.15

0 10

0.05

0.00

SMOS drier ASCAT more variable

150

Grid X

200

250

100

Model data

250 0.30 200 0.25 7 bito 0.20 0.15 100 0.10 50 · 0.05 200 250 Grid X

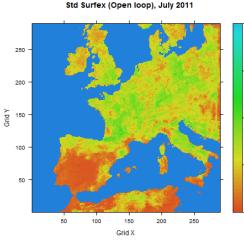
Mean soil moisture (m3/m3), Open loop, July 2011

Model – SURFEX (Le Moigne 2012): July – top: mean; bottom: std

Scale satellite data to model data account for bias & variability:

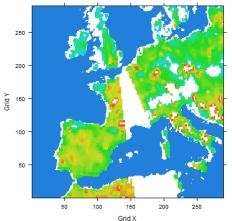
Linear re-scaling (Brocca et al., 2013):

 $SAT_{RES} = \frac{\left[SAT - \mu(SAT)\right]}{\sigma(SAT)}\sigma(OBS) + \mu(OBS)$

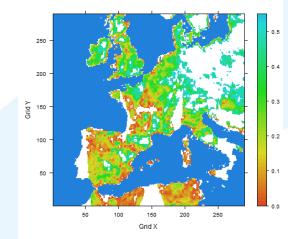

0.05

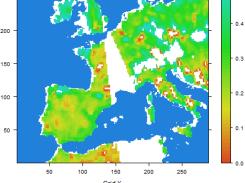
SAT : satellite; OBS : model

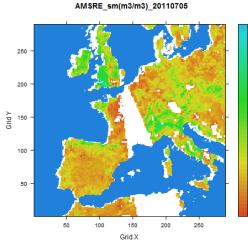
Satellite data: same mean & std as model over July 2011


Focus on satellite anomalies Look at selected days & time series

N.B. CDF-matching inappropriate length of time series is too short – future work




Scaling data



Satellite information 5 July - top: unscaled; bottom: scaled

ASCAT_sm(m3/m3)_20110705

0.4

0.3

0.2

0.1

250 200 ≻ pig 150 · 100 50 -100 150 200 250

Grid X

SMOS_sm(m3/m3)_20110705

150

Grid X

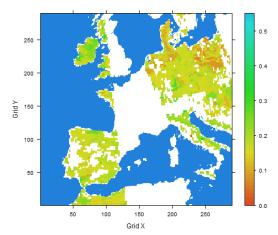
200

250

100

0 1

SMOS sm(m3/m3) 20110705


250

200

≻ 150

100

50

Scaling: dries AMSR-E, ASCAT, moistens SMOS White areas: either no data, or data off-scale

03

0.2

Combine obs & model information + errors Lahoz & De Lannoy, Surv. Geophys., 2014

Focus on July 2011 – European domain – short period so care with stats

EnKF (variants) – use ensemble square root EnKF (Sakov and Oke, 2008)

- •Model spin-up (1 month)
- Model forcing from WRF (NCAR FNL data) check representation of precipitation
 Five ensemble members (can choose other sizes)
- •Perturbation of superficial & mean volumetric water content -
- precipitation forcing available but not used; mean of ensemble = 0
- •Scale observations to model (linear re-scaling; other options)
- Test observational errors (chi-square approach)
- •Test system using self-consistency (O-F vs O-A differences)
- •Test results against independent data (ISMN in situ data) also ESA CCI data

Land DA results are preliminary & illustrative

Tests

Observations: self-consistency tests; evaluation of errors Chi square approach applied to corrected satellite data

N = no. of obs (July); F = forecast; A = analysis:

- $Chi-sq(A) = (1/N) * SUM[(O-A)^2 / R] Chi-sq(F) = (1/N) * SUM[(O-F)^2 / R]$
- 1. O-A differences should be smaller than O-F differences self-consistency test; passed
- 2. Chi-sq values should be close to 1 observational error information

<u>SMOS (N=547431)</u>

YERROBS=0.1	- Chi-sq(A) = 8.88
YERROBS=0.1	- Chi-sq(F) = 64.45
YERROBS=0.3	- Chi-sq(A) = 2.86
YERROBS=0.3	- Chi-sq(F) = 6.79
YERROBS=0.6	- Chi-sq(A) = 1.11
YERROBS=0.6	- Chi-sq(F) = 1.69

SURFEX code - observational error defined as R = (YERROBS*COFSWI)^2

YERROBS, parameter set in input file: typically use 0.3

 $COFSWI = (W_{fc}-W_{wilt})$ typical range 0.06- 0.09

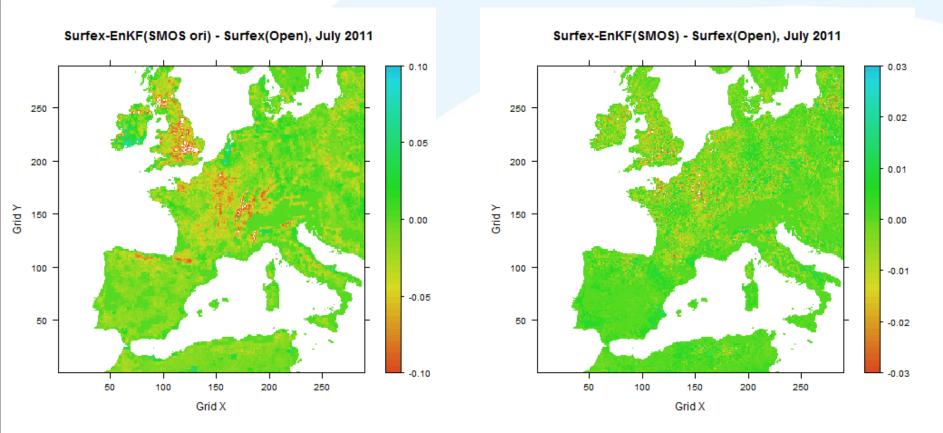
Error associated with SMOS anomalies is in range $0.036 - 0.054 \text{ m}^3\text{m}^{-3}$ when YERROBS=0.6

<u>AMSR-E (N=949842)</u>

YERROBS=0.3 - Chi-sq(A) = 2.71 YERROBS=0.3 - Chi-sq(F) = 6.38

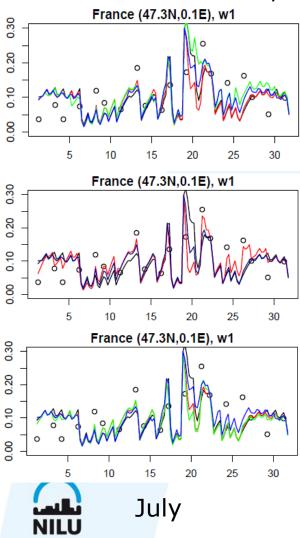
ASCAT (N=1007729)

```
\begin{array}{l} YERROBS=0.3 & - \ Chi-sq(A) = 2.72 \\ YERROBS=0.3 & - \ Chi-sq(F) = 6.45 \end{array}
```


Error associated with SMOS anomalies

```
Consistent with a SMOS error of 0.04 m<sup>3</sup>m<sup>-3</sup>
```

```
Kerr et al., 2010
```



July, SMOS, Differences: analyses – model Left: unscaled SMOS; Right: scaled SMOS

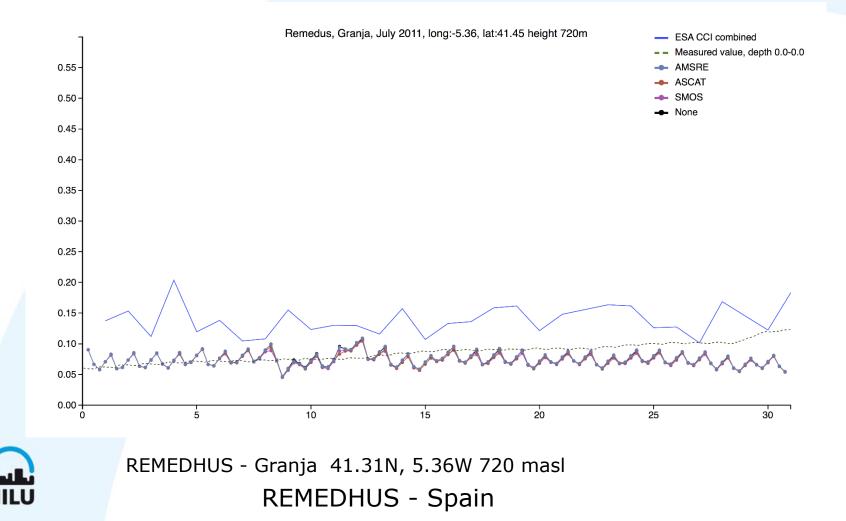
Regions of larger impact in unscaled version replicated in scaled version - e.g., France/Germany/England

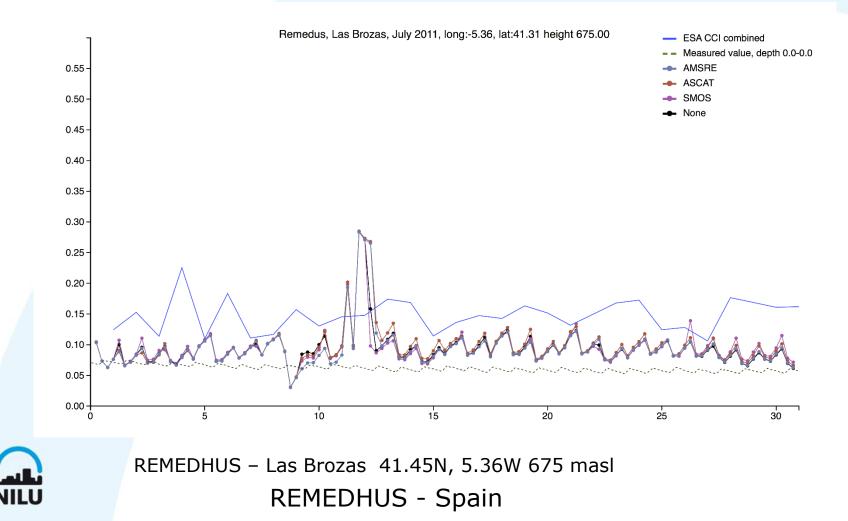
DA tests: analyses, model, observations (scaled) Location: nr. Tours, France

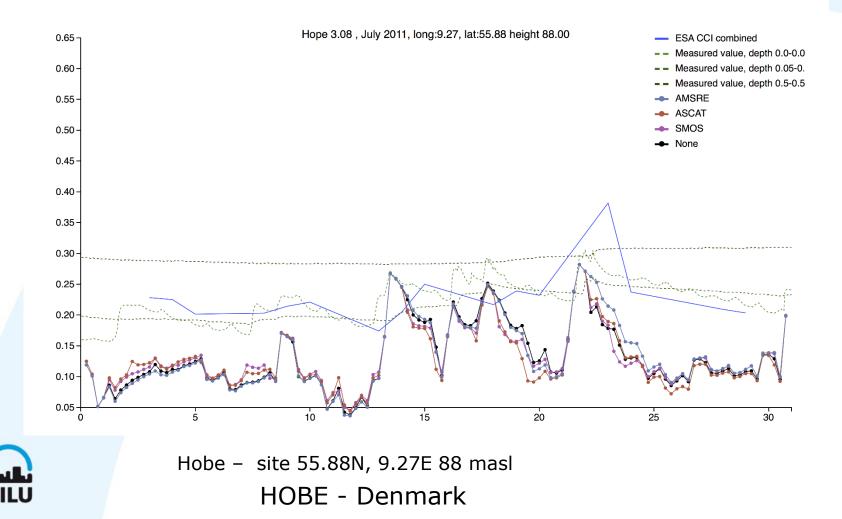
w1: superficial volumetric water content, m^3m^{-3} YERROBS = 0.3

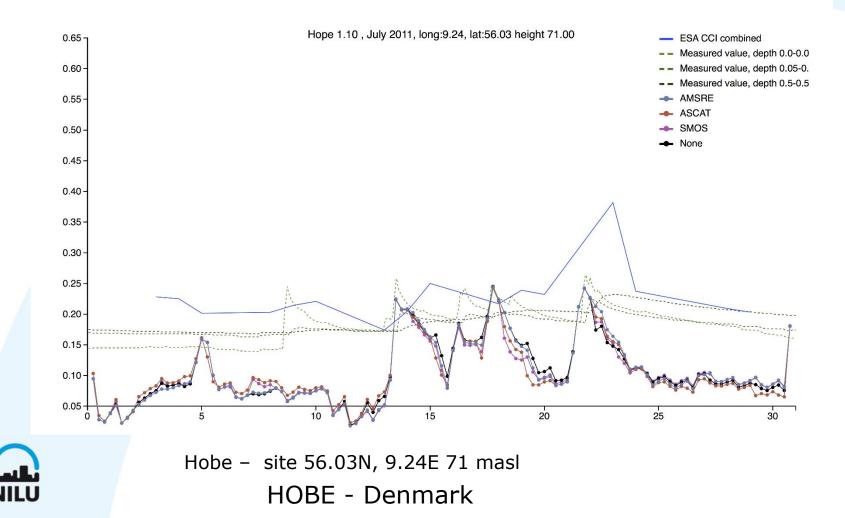
C	SMOS	 EnKF-SMOS	EnKF-ASCAT
	open loop	 EnKF-AMSRE	

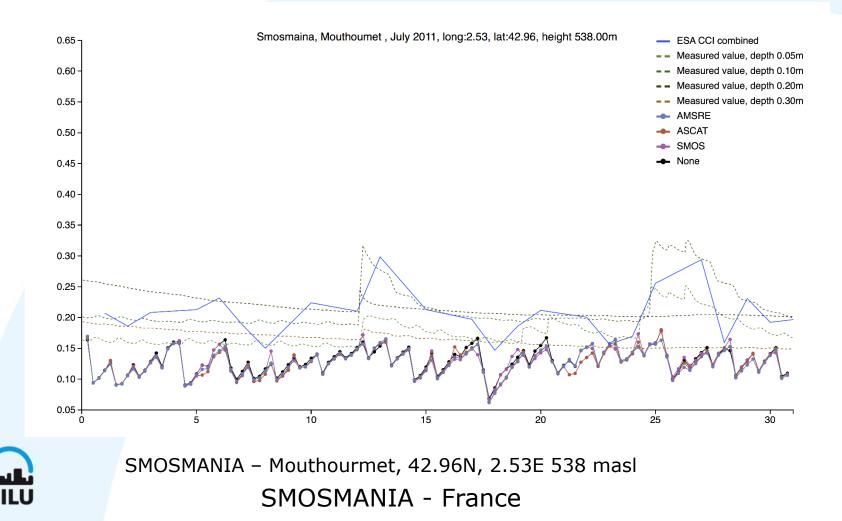
YERROBS = 0.1, 0.3 Increase observational error

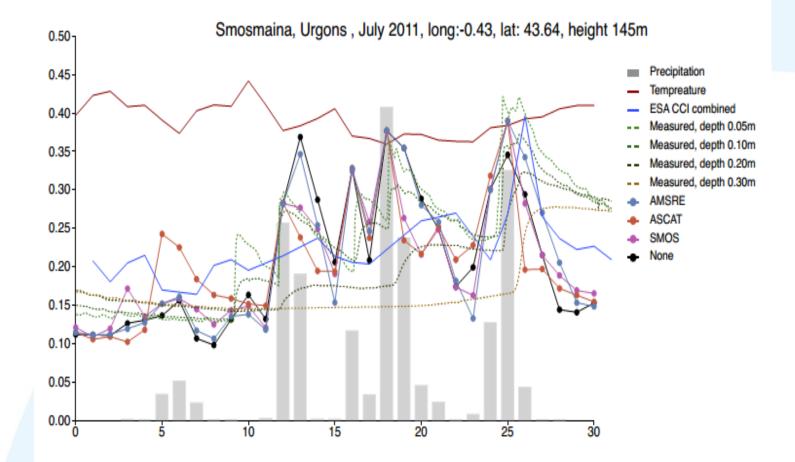

0	SMOS	 EnKF-Y01
	open loop	 EnKF-Y03

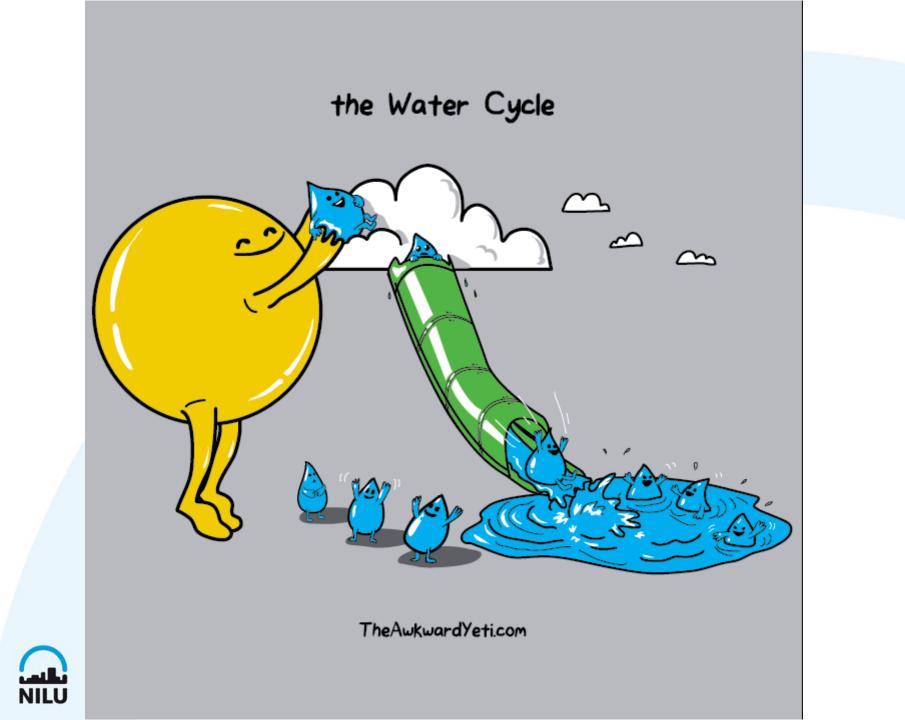

Larger ensemble perturbation – SMOSp Increase model error


0	SMOS	 EnKF-SMOS	EnKF-ASCAT
—	open loop	 EnKF-SMOSp	


- AMSR-E wetter fields
- SMOS drier fields
- Impact of obs/model error


Test v independent data Time series: analyses vs ISMN data – July 2011 *Thanks Morgan Kjølerbakken*




SMOSMANIA - Urgons 43.54N, 0.43W 145 masl SMOSMANIA - France

- Rescaling of satellite data -> anomalies wrt SURFEX model
- Forcing of WRF realistic precipitation consistent with soil moisture
- Assimilation of satellite anomalies done, but time period short
- Self-consistency tests (O-A, O-F, obs/model error) PASSED
- Information on satellite measurement errors CONSISTENT
- Comparison with independent data PATTERNS AGREE BIAS?
- Useful information in assimilated products ADDED VALUE

- Extend time period, ideally at least 1 year (trends) THEN:
- Use CDF-matching (or another method)
- Assimilate the satellite datasets (AMSR-E, ASCAT, SMOS) singly/together
- Assimilate ESA CCI combined data (self-consistency)
- Evaluate analyses with ISMN in situ data & ESA CCI soil moisture datasets – data now available

