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Abstract 

In the last few decades, pan-tropical land use and land cover change (LUCC) has led to 

increased disturbance and fragmentation of forested lands, with consequent impacts on 

hydrology. Most of the evidence, gathered from controlled site and small catchment studies, 

suggests that forest removal leads to increases in total annual water yield because of their 

greater water use (the ‘pump’ effect) compared to short vegetation. However, these controlled 

experiments cannot be considered representative of ongoing LUCC in many tropical 

landscapes, where more intensive farming practices have triggered new land degradation 

processes at large scales that may have a strong impact on soil infiltration (the ‘sponge’ effect). 

This thesis examines the potential and likely impact of LUCC on streamflow, particularly dry 

season flows, for the entire tropics (‘pan-tropically’) through a combination of hydrological 

analysis of flow datasets and modelling experiments of the tradeoff between changes to the 

sponge and pump effects with land use change. It is hypothesised that if soil infiltration capacity 

is severely diminished due to LUCC, and if prevailing rainfall intensities are (frequently) greater 

than surface infiltration capacity, then a net reduction of infiltration amounts may reduce soil 

profile moisture storage and enhance storm flows. This will serve to diminish baseflows due to 

the corresponding reduction in groundwater recharge. In catchments dominated by a seasonal 

precipitation regime (wet-dry cycles), dry season flows (generally composed mostly of 

baseflows) can be thus diminished. This can be crucial if dry season flows are used for 

productive activities and/or to maintain ecosystems. The main aims of this thesis are thus to: (i) 

evaluate where tropical LUCC can be expected to have the greatest impacts on dry season 

flows; and, on the basis of the resulting changes in evapotranspiration and infiltration (ii) to 

assess potential areas for rehabilitation and regeneration of hydrological services in degraded 

areas through reforestation. 

Hydrological analysis in two large Australian catchments (>10,000 km
2
) demonstrated that 

deforestation enhanced storm flow of all magnitudes and somewhat decreased slower flows, 

possibly as a consequence of reduced infiltration (i.e., a reduction of the ‘sponge’ effect). This 

finding showcases that, depending on the degree of soil disturbance, trade-offs in the ‘pump’ 

and ‘sponge’ effects may cause reductions in dry season flows for this landscape or elsewhere. 



The model used for the current pan-tropical impact experiments, the "World-Wide Water 

Resources Assessment system - Land Use Model" (W3RA-LUM), was tailored to incorporate 

not only changes in LUCC that directly affect evapotranspiration, but also those that affect the 

partitioning of infiltration and surface runoff. Model evaluation showed that the model had a 

reasonable performance compared to streamflow observations for 1461 tropical catchments 

and outputs obtained with various other hydrological models. It was also able to replicate the 

patterns of the response to LUCC at four tropical sites (although not replicating the observed 

magnitudes), three of which with documented negative impacts of LUCC on dry season flows. 

Pan-tropical sensitivity analyses, performed for scenarios with or without full forest cover and/or 

good or poor surface infiltration conditions showed an increase in mean annual streamflow of 

18% if only vegetation changes were taken into account. Streamflow increased by 26% if there 

were concurrent changes in soil surface conditions from good to poor. Much of the increase in 

mean annual streamflow occurred in more water-limited and seasonal environments. In some of 

these areas there was a reduction of dry season flows, at least for some of the driest months. 

Besides locating these sensitive areas, statistical analysis of the outputs suggested that current 

forested  landscapes with the largest potential impact of LUCC on dry season flows would have 

the following biophysical and climate characteristics: (i) there is sufficient rainfall in excess of 

potential evapotranspiration during the wet season to recharge deeper soil profiles and/or the 

groundwater system; (ii) the surface infiltration capacity can accommodate prevailing rainfall 

intensities during the wet season; (iii) there is sufficient soil water storage to ‘carry over' rainfall 

infiltrated during the wet season; (iv) a sufficiently long ‘buffer time' (in terms of groundwater 

recession coefficient) modulates the release of water stored in the deep soil profile or saturated 

zone as baseflow. Modelling outputs obtained from comparing scenarios of current and pre-

agricultural tree cover highlighted areas in which soil rehabilitation and regeneration through 

forestation can boost dry season flows in degraded areas. Some of these areas coincided with 

areas targeted by ongoing reforestation and restoration efforts, suggesting that these may 

(ultimately) have a positive effect on baseflow. 



Chapter 1  Research context, aims and objectives 

Contents 

1.1 Hydrological impacts of tropical land use and land cover change (LUCC) 

1.2 Objectives 

1.4  Thesis overview 
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1.1 Hydrological impacts of tropical land use and land cover change 

(LUCC) 

Tropical landscapes are undergoing rapid land use and land cover change (LUCC
1
). In the last 

few decades, vast areas of tropical forests have been replaced at unprecedented rates. The 

Forest Resource Assessment (FRA) completed by the FAO in 2005 and preliminary results of 

FRA 2010 indicate that on a global scale the total forest area continues to decrease (FAO, 

2006; FAO, 2010). It is across the tropics that deforestation continues at the highest rates, and 

FRA estimates for 1990–2005 suggest annual rates of deforestation of 0.9% in South Asia and 

Southeast Asia, 1.2% in Central America, 0.45% in South America and 0.62% in Africa. This 

means that, on average, each year from 1990 to 2005, an area of 116,000 km
2
 of tropical forest 

was lost, roughly thrice the area of Denmark. 

Many tropical landscapes have experienced expansion and intensification of agricultural 

practices. Often, these new practices have triggered widespread land degradation processes 

which may have an important impact on hydrological processes, particularly through adverse 

changes in soil physical properties, that reduce surface soil infiltration capacity and enhance the 

intensity and frequency of infiltration-excess overland flow and surface erosion (Loker, 1994; 

Eswaran et al., 2002; Lamb et al., 2005; Turkelboom et al., 2008; Ziegler et al., 2009). 

In a hydrological context, any forest type can be metaphorically compared both to a ‘pump’ and 

a ‘sponge’
2
. Forests act as ‘pumps’ through plant evaporation. Forests also act as ‘sponges’ by 

enhancing infiltration rates and moisture retention due to the effects of organic matter and the 

root network on soil physical properties. Water that is not evaporated or lost to streams as 

                                                     
1
 Land use and land cover change (LUCC) is a general term for the human modification of the Earth’s terrestrial surface 

(Ellis and Pontius, 2011). Land cover refers to the physical and biological cover over the surface of land, whereas the 
human activities that alter the land surface processes (e.g., agriculture, forestry and construction) refer to land uses 
(Ellis and Pontius, 2011). The LUCC that pertains to the removal of natural forest referred herein as deforestation. Both 
LUCC that pertains to reforestation, either by natural regeneration or by plantation forestry, or to the establishment of 
new forest in areas where there were none before (afforestation), are referred herein as forestation (Scott et al., 2005). 
Either afforestation or reforestation will be used to define LUCC in cases were these cannot be used interchangeably. 

2
 Bruijnzeel (2004) provides an insightful discussion of how these two interpretations of the hydrological role of forest 

during the 1920s and 1930s were taken by Dutch researchers in the former Dutch East Indies (now Indonesia) to a 
great extent as mutually exclusive and how the debate continued until very recently, when new scientific research led to 
a view of forests both acting as ‘sponges’ and ‘pumps’. Nevertheless, both arguments are still used in the public arena 
to favour or undermine policies that aim at conservation and/or establishment of forests. Nowadays, not only elucidating 
the hydrological role of forests, but also conveying the science to stakeholders, is of key importance for proper resource 
management.  
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overland flow and/or subsurface flow, infiltrates to deeper layers and is stored in the soil or the 

groundwater system and ultimately released as baseflow. These two concepts occur together at 

any one time and LUCC will have effects on both the ‘sponge’ and ‘pump’ characteristics of 

forests. 

The impacts on hydrology of (mainly temperate) forest conversion to a different land use 

generally consist of increases in total annual water yield, infiltration and ground water recharge 

commensurate with the percentage of forest removed (Bosch and Hewlett, 1982; Stednick, 

1996; Brown et al., 2005). The increase in flows occurs mainly because dense forests have 

both greater water use and interception losses than grasses and crops (Van Dijk and Keenan, 

2007; Van Dijk and Bruijnzeel, 2001), and in this context forests act more like ‘pumps’ than the 

alternative land use (e.g., grazed pastures, cropped fields). The bulk of the annual increase in 

flows typically occurs during conditions of baseflow as long as surface soil infiltration 

characteristics are reasonably maintained following forest conversion (Bruijnzeel, 2004; Brown 

et al., 2005). There are two known probable exceptions where the loss of forests can lead to a 

reduction in total annual water yield (irrespective of the gains from reduced water use by the 

new vegetation): (i) in montane cloud forests where fog deposition or ‘cloud stripping’ may 

amount to 5–20 % of incident rainfall (or exceed rainfall during the dry season) and in excess of 

interception evaporative losses (Bruijnzeel and Proctor, 1995; McJannet et al., 2007; Mulligan et 

al., 2010; Bruijnzeel et al., 2011); and (ii) in some types of old-growth forests, where the water 

use of the replacing vigorous regrowth having a much higher stomatal conductance (e.g.,

Juhrbandt et al., 2004)  may exceed the evapotranspiration of the former forest (e.g., Langford, 

1976 for temperate mountain ash forest; Giambelluca, 2002; Hoelscher et al. 2005 for tropical 

forest types). 

The evidence to support the previous findings has mostly been gathered through controlled 

experiments. These include direct observational means (e.g., sap flow measurements), site 

water balance or atmospheric water balance studies, and small, controlled paired catchment 

studies (i.e., <1 km
2
) (cf. Van Dijk and Keenan, 2007; Bruijnzeel, 1990; Grip et al., 2004). Under 

such controlled experimental conditions, measurements often lasted for a few years after forest 

clearing and surface disturbance was limited in most cases (Grip et al., 2004; Malmer et al., 
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2010). Conversely, post-forest conditions where productive activities have taken place for 

decades frequently may show severe soil degradation and reduction in porosity and infiltration.  

This may be caused by soil compaction through overgrazing, logging and/or mechanized 

agriculture (Martinez and Zinck, 2004; Ziegler et al., 2006, Mehta et al., 2008, Germer et al., 

2009), raindrop-impact soil compaction (Lal, 1987, 1996; Moss, 1991), an increase of 

compacted and/or sealed rural roads, trail and yard surfaces (Wemple and Jones, 2003; Ziegler 

et al., 2004; Rijsdijk et al., 2007; Negishi et al., 2008), and the reduction in soil bioporosity (Lal, 

1987; Chappell, 2010). In such cases, the net effect translates into a reduction of the ‘sponge’ 

characteristics of the former forest soil (Bruijnzeel, 2004). 

In landscapes where soil degradation has reduced the ‘sponge’ characteristics of the soil and 

diminished infiltration opportunities, rainfall intensities are likely to exceed more frequently the 

soil’s infiltration capacity, thus enhancing overland flow occurrence (e.g., Zimmermann et al., 

2010; Bonell et al., 2010). This assumes additional importance in catchments dominated by 

seasonal rainfall, where infiltration and subsequent percolation ultimately replenish a slow 

groundwater system that sustains streamflow during the dry season. In such catchments, the 

distribution of streamflow throughout the year may be more important than total annual water 

yield (Bruijnzeel, 2004; Chandler, 2006). In severely degraded catchments with the 

aforementioned characteristics, the reduced recharge and storage of groundwater may in turn 

reduce dry season flows; irrespective of the increases in total flows due to reduced the forest 

water use (see examples in Bruijnzeel, 2004).   

Evidence of reduced dry season flows after LUCC has been showcased in the literature for 

different tropical environments. In monsoonal Sri Lanka, a decrease in dry season flows was 

observed in the 1,100 km
2
 upper Mahaweli catchment, which was ascribed to conversion of tea 

plantations to annual cropping and home gardens without appropriate soil conservation 

measures (Madduma-Bandara and Kuruppuruarachchi, 1988; Bruijnzeel, 2004). Rainfall and 

streamflow time-series for the 1940–1980 period showed that, although the observed negative 

trend in rainfall was not significant, there was an overall increase in wet season flows and a 

slight decrease in dry season flows (Figure 1.1). A gradual reduction over 50 years since 1940 

of forest area from 50% to 15% and the early establishment of tea plantations and home 
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gardens in the Nilwala catchment (1,073 km
2
), elsewhere in Sri Lanka; also resulted in a change 

in seasonal streamflow regime, with reduced dry season flows and wet season flows peaks 

occurring earlier in the year (Elkaduwa and Sakthivadivel, 1998). The changes in flow regime 

were attributed to a loss of infiltration opportunities associated with the new land uses; however, 

the role of climate variability was not fully addressed by the authors. 

Figure 1.1 (a) Five-year moving averages of annual rainfall, streamflow and runoff ratios for the 
upper Mahaweli basin above Peradeniya, Sri Lanka. (b) Streamflow volume (in millions of m

3

per month) for the wet season (August–September) and the dry season (January–March) (after 
Bruijnzeel, 2004). 

In the upper Konto catchment in East Java (Indonesia), the clearing of 33% of forest and its 

replacement by rainfed cropping with poor conservation measures, plus an increase in sealed 

surfaces such as roads and settlements reduced infiltration opportunities (Rijsdijk and 

Bruijnzeel, 1991; Rijsdijk et al., 2007). The excess water associated with reduced 

evapotranspiration following forest clearing, did not compensate for the loss of soil-water and 

groundwater recharge due to the diminished infiltration, thereby changing the seasonal 

distribution of streamflow and reducing dry season flows (Figure 1.2). 

Sandström (1995) established that a reduction in dry season flows in northern semi-arid 

Tanzania since the mid-1940s was caused by accelerated forest clearing and subsequent land 

degradation due to grazing and not climatic change (or variability). The loss of soil macropore 

(b) (a) 
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networks (or bioporosity) due to rainfall and human induced compaction was deemed key to the 

reduced surface infiltration rates, especially on steeper slopes with fine-textured soils. 

Figure 1.2 Change in seasonal distribution of streamflow depth (mm mo
-1

) at Selorejo, upper 
Konto catchment, East Java, Indonesia, following the replacement of 33% of forest by rainfed 
cropland and settlements (after Bruijnzeel, 2004). 

Several studies showed that the saturated hydraulic conductivity (Ksat) or infiltration rates (I) in 

disturbed soils can be up to several orders of magnitude lower in extreme cases than in nearby 

undisturbed forests. Table 1 presents a summary of studies conducted in the tropics that 

compare Ksat or I before and after LUCC. The extent of disturbance and soil type will often 

dictate the impact. For example, low impact cropping such as swidden cultivation in Northern 

Vietnam (Ziegler et al., 2004) has relatively lower and less lasting effects on soil infiltrability than 

repeated surface disturbance (in the form of litter removal and fuel-wood collection) in degraded 

forests in the Indian Western Ghats (Bonell et al., 2010). 

Few studies have examined the impacts of forestation or natural regrowth on the recovery of 

soil infiltration characteristics and how this in turn affects dry season flows in degraded tropical 

areas. Forestation or natural regrowth generally increases infiltrability in tropical soils (Ilstedt et 

al., 2007) but it may well take two or more decades of uninterrupted soil recovery to bring the 

infiltration characteristics of severely disturbed soils back to their former values (Ziegler et al., 

2004; Bonell et al. 2010; Hassler et al., 2011; Ghimire et al., 2013). Ziegler et al. (2004) 

Agriculture 

Forested 
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reported that Ksat had a slow recovery in abandoned swidden fields in northern Vietnam, with 

15–25 years needed before Ksat values resembled those of natural forest. In the Western Ghats 

of India, Bonell et al. (2010) reported only a small increase in Ksat after 10 years of forestation of 

previously degraded land. Hassler et al. (2011) concluded that recovery of Ksat may take more 

than 8 years in grazing lands in two catchments of central Panama. 

Table 1-1 Changes in soil hydraulic properties after LUCC in terms of: (a) infiltration rate (I) or 
(b) near soil surface field saturated hydraulic conductivity (Ksat). Ksat measured in the field can 
be half of that estimated in laboratory (Bonell et al., 2010). 

Site Metric Land cover mm h
-1

 Land cover mm h
-1

 % Source 

pre-LUCC post-LUCC change 

Brazilian 
Amazonia 

Ksat pasture 200 
grazed 
pasture 

50 -75 
Zimmermann et 

al. (2010) 

Brazilian 
Amazonia 

Ksat forest 260 
abandoned 

pasture 
30 -88 

Godsey and 
Elsenbeer 

(2002) 

Brazilian 
Amazonia 

Ksat forest 230 pasture 4 -98 
de Moraes et al.

(2006) 

Colombian 
Amazonia 

I forest 150 
grazed 
pasture 

10 -93 
Martinez and 
Zinck (2004) 

Costa Rica I forest 2462 
grazed 
pasture 

29 -99 
Deuchars et al.

(1999) 

Northern 
Australia 

Ksat
Eucalypt 
woodland 

290 bare 65 -78 
Bonell and 

Williams (2009) 

Northern 
Australia 

Ksat
Eucalypt 
woodland 

720 
grazed 

pasture* 
186 -74 

Bridge et al.
(1983) 

Northern 
Mexico 

Ksat pasture 29 
compacted 

pasture 
13 -55 

Viramontes and 
Descroix (2003) 

Northern 
Vietnam 

Ksat forest 154 crops 103 -33 
Ziegler et al.

(2004) 

Peruvian 
Amazonia 

Ksat
secondary 

forest 
998 crops 185 -81 

Alegre and 
Cassel (1996) 

Western 
Ghats, India 

Ksat forest 60 
degraded 

forest 
15 -75 

Bonell et al.
(2010) 

* Treated to simulate overgrazing 

In the Philippines, Chandler and Walter (1998) compared two hillslope plots on Leyte Island, 

one covered with 20-year-old regrowth and the other under severely degraded grassland. A 

massive reduction in both overland flow and shallow subsurface flows was observed for the 
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forested plot compared to the degraded hillslope. Interestingly, the amount of reduction was 

more than sufficient to compensate for the likely increase in evapotranspiration associated with 

the forested plot although this could not be demonstrated in the form of increased streamflows 

due to the absence of surface flow channels in this karstic terrain (Chandler, 2006). 

Nevertheless, according to villagers in both southern and northern Leyte (i.e. in the vicinity of 

the Chandler and Walter study), spring discharges had increased some 15–20 years after 

forestation of degraded grasslands, with flows continuing during ENSO-induced drought periods 

where formerly the springs would dry up (L. A. Bruijnzeel, pers. comm.).  

There is scant information on the hydrological impacts of forestation of degraded tropical lands 

at the meso-scale catchment or river basin scale. At the regional scale, the work of Zhou et al.

(2010) demonstrated through analysis of 50 years of hydrometric data, that the occurrence of 

higher dry season flows after large-scale reforestation in several rivers in Guandong Province 

(Southern China) was not related to climatic variability or human activities (e.g., redistribution of 

seasonality of flows through reservoirs). The observed increase in baseflows was attributed to 

an increase in infiltrability under forest cover, although no direct evidence for this was provided. 

Nevertheless, various small-scale studies in the same ‘Red Soils’ region of Southern China 

have shown major reductions in storm flow production following forestation of highly degraded 

lands, often within a decade after planting (e.g., Zhou et al., 2002; Zhang et al., 2004; Zheng et 

al., 2008). Evidence elsewhere has also shown that reforested sites have higher bioporosity 

than pastures and thus their infiltrability can be expected to increase with time after forestation 

(cf. Gilmour et al., 1987; Zou and Gonzalez, 1997; Collof et al., 2010). 

The study by Zhou et al. (2010) is the only known to the author that showcases seasonal 

redistribution of flows at the regional scale (>175,000 km
2
) after forestation in the tropics. This is 

all the more remarkable because there are several scale-related factors that may preclude the 

direct demonstration in larger catchments (say, >500 km
2
) of the kind of results obtained in 

small experimental catchments; these include: (i) climatic and vegetation gradients in relation to 

the distribution of forests; (ii) the variety of land uses typically found in larger catchments; (iii) 

the typically limited spatial extent of convective rainfall cells in the tropics; (iv) spatially variable 
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soils and geology across the catchment (Blöschl et al., 2007; Donohue et al., 2010; Mulligan et 

al., 2010; Peña-Arancibia et al., 2012; Beck et al., 2013). 

The case studies discussed above illustrate the fact that changes in dry season flows after 

LUCC are catchment-specific and depend on (i) the competing processes that govern how 

rainfall is partitioned between evapotranspiration, storm runoff and soil water recharge; and (ii) 

the nature of the prevailing groundwater system (Calder et al., 2002). These processes are 

driven by climatic and biophysical characteristics of the system, including rainfall characteristics 

(and their variability), land cover, soil type and surface condition, topography and the 

groundwater outflow system (determined, in turn, largely by geology and topography). 

As discussed previously, both climate and land use are important drivers of changes in 

catchment hydrology, yet their relative effects are difficult to separate empirically (Tomer and 

Schilling, 2008). Rodriguez et al. (2010) summarised a number of studies that have concluded 

that many of the trends observed in Amazonian tributaries along the ‘deforestation arc’ (cf.

Morton et al., 2006) were attributed to climatic changes and not to LUCC effects. Several 

techniques have been used to attempt separating the effects of LUCC and climatic variability in 

large catchments including time-series analysis and hydrological modelling. A third approach 

makes use of metrics obtained from streamflow time-series, and, by relating these to concurrent 

LUCC, it may be possible to explore changes in hydrological processes dynamics. For example, 

techniques for streamflow partitioning into storm flow and baseflow may provide straightforward 

evidence to assess the trade-off between the ‘sponge’ and ‘pump’ effects. A number of studies 

in the (sub)tropics have used these types of metrics to this end (e.g.,  Viramontes and Descroix, 

2003; Germer et al., 2009; Rodriguez et al., 2010; Recha et al., 2012; Shu et al., 2012). 

Besides changes in vegetation type, land use exerts a major influence on surface soil condition. 

From a modelling perspective, the framework for translating the impacts of LUCC on hydrology 

can be summarised by the four situations presented in Figure 1.3. 
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Figure 1.3 Situations for impacts of LUCC on dry season flows. Situation A corresponds to 
deforestation in which the soil condition is (largely) maintained. In situation B, soil conditions are 
changed negatively, leading to decreased infiltration opportunities. Idem for situations C 
(forestation with little change in surface soil condition) and D (forestation with major positive 
changes in soil condition). 

The four situations illustrated in Figure 1.3 enable the formulation of the following research 

hypotheses: 

(A) In situation A, deforestation associated with small or no changes in surface 

infiltration characteristics (in the case of low impact logging, soil conservation 

measures, low rainfall erosivity, stable soil aggregates or a combination thereof; cf. 

Edwards, 1979) will invariably lead to an increase of dry season flows, due to the 

smaller water use and interception of the grasses and crops replacing the forest. 

(B) In situation B, deforestation (loss of the ‘pump’ effect) associated with 

negative changes in surface infiltration characteristics (loss of the ‘sponge’ effect 

due to soil compaction, logging and/or mechanized agriculture or a combination 

thereof) can either decrease or increase dry season flows, depending on the trade-

off between the associated changes in vegetation water use and infiltration, 

respectively. 

(C) In situation C, forestation accompanied by little changes in surface infiltration 

characteristics will invariably lead to a decrease of dry season flows, due to the 

larger water use and interception of the forests replacing grasses and crops. 
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(D) In situation D, forestation associated with negative changes in surface 

infiltration characteristics (e.g., due to the poor soil building capacity of the planted 

species or repeated surface disturbance during forest maturation in the form of 

litter removal, understory harvesting, or grazing; cf. Ghimire et al., 2013) will 

invariably lead to a decrease in dry season low flows due to the higher water use 

and rainfall interception losses of the forest vegetation, i.e., the forest acts 

predominantly as a ‘pump'. Conversely, if surface infiltration characteristics are 

positive (e.g., the development over time of a layer of organic matter that enhances 

moisture retention and a root network that enhances infiltration; cf. Ghimire et al., 

2013), dry season flows can either decrease or increase again depending on the 

trade-off between the associated changes in vegetation water use and infiltration, 

respectively. 

Hypotheses A and C have been generally supported with numerous small-scale catchment 

experiments, although direct verification at larger scales has not always been successful 

(Blöschl et al., 2007; Donohue et al., 2010; Peña-Arancibia et al., 2012). Bruijnzeel (1989, 2004) 

has provided a rationale for the investigation of hypotheses B and D. In hypotheses B, dry 

season flows will only decrease after deforestation if large-scale soil degradation causes a 

sufficiently large overall reduction in surface infiltration (with resulting increases in storm flow 

volumes) to counteract the increases in flows due to the lower evapotranspiration of the post-

forest land cover. The associated diminished soil and groundwater recharge reduces 

groundwater outflows and thus dry season flows. In other words, soil degradation causes a net 

loss of the former forest’s ‘sponge’ effect. Likewise, in hypothesis D, dry season flows will only 

increase after reforestation if the extra water use by the new trees is more than compensated by 

improved infiltration. A positive effect on dry season flows thus requires that the increase in 

infiltration is greater than the increase in evapotranspiration. In addition, it requires sufficient soil 

depth (for soil profile water storage during the dry season) and a sufficiently degraded starting 

situation to allow the soil’s infiltrability to be improved sufficiently after planting. The net effect in 

this case is the return of the forest ‘sponge’ effect. The above ‘pre-requisites’ may also become 

more influential if the rainfall regime is dominated by marked wet and dry cycles (i.e., if there is 



1-11 

a clear dry season) and slow groundwater discharge buffers streamflow variability during the dry 

cycles. 

1.2 Aims and objectives 

The aim of this thesis is to assess the potential and likely impact of LUCC on dry season flows 

for the entire tropics (pan-tropically) through a combination of hydrological analysis and 

modelling. This aim incorporates the following specific objectives: (i) to define reference 

hydrological conditions under natural forest conditions; (ii) to evaluate where tropical LUCC can 

be expected to have the greatest impacts on dry season flows; and on the basis of changes in 

evapotranspiration and infiltration (iii) to assess potential areas for rehabilitation and 

regeneration of hydrological services in degraded areas through reforestation. 

The aim of predicting the impacts of LUCC on the water balance through modelling requires the 

simulation of processes involving vegetation and soil dynamics critical to the partition of rainfall 

into evapotranspiration and runoff. Several hydrological models applied globally where 

developed in principle to estimate runoff, floods and for water resources assessments (e.g. 

V�r�smarty et al., 1989; Arnell, 1999; D�ll et al., 2003; Widen-Nilsson et al., 2007). The focus 

was mainly to capture the distribution and timing of water movement along drainage networks; 

hence many of the processes that describe soil and vegetation interactions did not provide 

enough information to make them amenable to simulating impacts of LUCC. On the other hand, 

so-called land surface models (LSMs) can capture the effects of LUCC on the water and energy 

balance using sophisticated descriptions of vegetation and root-zone dynamics through soil-

vegetation-atmosphere transfer schemes (SVATS) (e.g. Essery et al., 2003; Krinner et al., 

2005). These were primarily developed as part of general circulation models (GCMs) used to 

simulate climate change (Pitman, 2003). LSMs have rarely interaction of lateral surface and 

subsurface flows as in hydrologic models (Overgaard et al., 2006), although more recent 

spatially distributed LSMs combine features of hydrological models that permit such interactions 

(e.g. Hasanaki, 2007; Rost et al., 2008; Dadson et al., 2011). For example, the LSMs 

ORCHIDEE (de Rosnay et al., 2003), LPJ (Sitch et al., 2003), JULES (Best et al., 2011) and the 
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GLDAS suite of models (Rodell et al., 2004) can be coupled to routing schemes to simulate 

lateral transport. 

The model that is used here to simulate the hydrological impacts of LUCC and test the 

respective hypotheses summarised in Figure 1.3 is a global variant of the Australian Water 

Resources Assessment system Landscape hydrology (AWRA-L, version 0.5) model (Van Dijk, 

2010a, Van Dijk and Renzullo, 2011) referred to here as the ‘World-Wide Water Resources 

Assessment system’ (W3RA) (Peña-Arancibia et al., 2011; Van Dijk et al., 2013). The variant of 

W3RA used here, which uses a structure amenable to LUCC scenario modelling is referred to 

as the W3RA Land use Model (W3RA-LUM). W3RA-LUM can be considered a hybrid between 

a simplified grid-based land surface model and a lumped catchment model applied to individual 

grid cells. Where possible, process equations were selected using a downward approach 

through evaluation against a range of Australian hydrometric and climatic data as part of the 

model’s development (Van Dijk, 2010b; Van Dijk, 2010c) or sourced from published literature. 

The version of the model used here represents subgrid variation in vegetation cover by 

considering two ‘hydrological response units’ (HRUs):  

• Deep-rooted tall vegetation (‘forest’) which can use water from shallow and deep soil 

layers.  

• Shallow-rooted short vegetation (‘herbaceous’) which can only use water from shallow 

soil layers. 

W3RA-LUM will be run at 1° grid resolution and at a daily time-step, commensurate with the 

resolution of high-quality long-term climatic data (discussed in Chapter 3). Model outputs at this 

temporal scale are considered applicable to catchments with sizes up to around the model’s 

grid resolution (10,000 km2). The version of the model used here does not include a 

representation of river routing, although aggregation for larger catchments over monthly periods 

might not be greatly affected by the lack of routing per se. In addition, there is no representation 

of lateral redistribution of water between grid cells. The model does not account either for 

sources of losses and withdrawals, which may be of importance, particularly in drier areas 

and/or seasons. In addition, river management such as regulation, reservoir operation and 

extraction and transmission losses are not represented in this version of the model. Under these 
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assumptions and model structural simplifications, the implications for the appropriate 

interpretation of model outputs will be discussed in Chapter 5. 

AWRA-L was extensively evaluated against a range of in situ and satellite observations in 

Australia, representing several climatic and biophysical environments also including tropical 

environments (Van Dijk and Warren 2010; Van Dijk and Renzullo, 2011; Van Dijk et al., 2013). 

Full technical details of the model can be found elsewhere (Van Dijk, 2010a). Technical details 

pertaining to the application of the model in this thesis are covered in Chapters 5 and 6 (see 

Thesis outline below). 

Feedbacks of LUCC on rainfall generation are not considered in W3RA-LUM. Although it has 

been claimed that the rain forests of the Amazon and Congo maintain their own climate through 

‘rainfall recycling’, and that clearing of large tracts of forest may cause a major reduction in 

rainfall (Makarieva and Groshkov, 2007; Sheil and Murdiyarso, 2009), the physical foundations 

of this hypothesis have been severely criticised (Meesters et al., 2009). More importantly, no 

physical evidence of a reduction in rainfall was found by Angelini et al. (2011) after major 

reductions in the amount of vegetation in Amazonia. Similarly, no statistically significant rainfall 

changes directly attributable to large scale LUCC have yet been observed (Wilk et al., 2001; 

Costa et al., 2003).  

1.3 Thesis outline 

Some of the chapters that make up this thesis were originally written as research articles, most 

of which have been published in the meantime. Following this introductory chapter, Chapters 2 

and 4 are self-contained studies that are presented here in the original format of the respective 

journals. Chapter 2 describes and presents results of several inference methods to assess the 

hydrological impacts of LUCC on two large catchments (>10,000 km
2
) in the seasonal tropics of 

Australia. Chapter 3 is based on an unpublished report, a journal article and a peer-reviewed 

conference article. The conference and journal articles can be found in the corresponding 

appendix section. In this chapter, several climate datasets are assessed (through a literature 

review and/or evaluation against observations) for their strengths and weaknesses. Results of 
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the assessment provide the rationale for the choice of data used in the subsequent modelling 

experiments. In Chapter 4, statistical methods are used to parameterise the groundwater 

hydrology module of W3RA-LUM. Chapter 5 describes the model’s structure, pan-tropical 

parameterisation and model evaluation whereas scenario modelling and analysis of results are 

presented in Chapter 6. Finally Chapter 7 presents the conclusion and recommendations. In 

addition, Appendix A contains a glossary (adapted from the UNESCO International Glossary of 

Hydrology and from Wikipedia) of the main hydrologic terms used herein (UNESCO, 2013). 

A summary of each chapter, the underlying publications and the interrelation between these are 

presented below and summarised in Figure 1.4. 

Figure 1.4 Diagram of the thesis structure highlighting the studies conducted, the corresponding 
chapters and their interrelations. 
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Chapter 2 Identifying hydrological impacts of LUCC on streamflow metrics at the regional 
scale 

Peña-Arancibia, J. L., A. I. J. M. van Dijk, J. P. Guerschman, M. Mulligan, L. A. Bruijnzeel, and 
T. R. McVicar (2012), Detecting changes in streamflow after partial woodland clearing in two 
large catchments in the seasonal tropics, Journal of Hydrology, 416/417, 60-71. 

This article presents a summary of the body of hydrological literature dealing with the impacts of 

LUCC on the hydrology of large (sub)tropical catchments. Two large catchments (>10,000 km
2
) 

in the seasonal tropics of Australia and several published inference methods are used to 

discriminate between climate and LUCC (in this case clearing of Acacia and Eucalyptus

woodlands for cattle ranching) as drivers of hydrological change. In the first catchment (the 

Comet river basin), two periods before and after LUCC separated by a number of years (to 

permit the establishment of a new hydrological equilibrium) were used to assess the role of 

LUCC in the shifts in dynamics of hydrological processes, independently of climate. In the 

second catchment (the Upper Burdekin river basin), detailed temporal information on LUCC 

permitted the assessment of transitional shifts in dynamics of hydrological processes that could 

be related to LUCC. 

It is postulated that, although concurrent climate variability is the main driver of hydrological 

change, some changes in catchment dynamics were attributable to LUCC. In particular, it was 

observed that for both catchments, changes in LUCC resulted in enhanced storm flow of all 

magnitudes and a decrease in slower flows, possibly as a result of a decrease in infiltration 

opportunities.  

The findings in this article were used as rationale to modify model parameters and tailor 

scenarios to test hypothesis B. 

Further discussion about the apparent weak influence of LUCC on the water balance in the 

Comet catchment and published evidence about the weak influence of vegetation type in 

general in larger catchments with mixed land cover (e.g., Oudin et al., 2008); prompted further 

analysis using synthetic experiments and AWRA-L to determine methodological limitations and 

physical processes that may preclude a stronger land cover signals. The results were 

summarised in: 
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Van Dijk, A. I. J. M., J.L. Peña-Arancibia and L. A. Bruijnzeel (2012), Land cover and water 
yield: inference problems when comparing catchments with mixed land cover. Hydrology and 
Earth System Sciences, 16, 3461-3473. 

This study is discussed further in Chapter 5 and is reproduced in Appendix F. 

Chapter 3 Availability and quality assessment of data for pan-tropical scale modelling of 

surface hydrology 

Peña-Arancibia, J. L., A. I. J. M. van Dijk, M. P. Stenson, and N. R. Viney (2011) Opportunities 
to evaluate a landscape hydrological model (AWRA-L) using global data sets, MODSIM 2011, 
19th International Congress on Modelling and Simulation Modelling and Simulation Society of 
Australia and New Zealand, December 2011, 4071-4077 pp. 

Peña-Arancibia, J. L., A. I. J. M. van Dijk, M. P. Stenson, and N. R. Viney (Unpublished) Data 
sets for the implementation of a global version of AWRA-L: Opportunities for further model 
evaluation. CSIRO: Water for a Healthy Country National Research Flagship, pp.32. 

Peña-Arancibia, J. L., A. I. J. M. van Dijk L.J. Renzullo, and M. Mulligan (2013), Evaluation of 
precipitation estimation accuracy in reanalyses, satellite products and an ensemble method for 
regions in Australia and in South and East Asia, Journal of Hydrometeorology, 14, 1323-
1333. 

The report, the peer reviewed conference article are amalgamated and presented as a Thesis 

chapter. Methods for rainfall evaluation are drawn from the journal article. The chapter 

describes and assesses the strengths and weaknesses of meteorological forcing data required 

to implement W3RA-LUM, particularly in terms of daily rainfall, radiation, and temperature. 

Chapter 4 Parameterising pan-tropical scale models of groundwater hydrology and 
baseflow generation 

Peña-Arancibia, J. L., A. I. J. M. van Dijk, M. Mulligan, and L. A. Bruijnzeel (2010), The role of 
climatic and terrain attributes in estimating baseflow recession in tropical catchments, 
Hydrology and Earth System Sciences, 14(11), 2193-2205. 

The values for most biophysical parameters in W3RA-LUM can be readily obtained or inferred 

from global datasets, or derived through model testing as was done in the Australian 

implementation of AWRA-L (Van Dijk, 2010a). Often this is not the case with model parameters 

describing the groundwater system. Since there is a dearth of hydrogeological data at the global 

scale, modelling of groundwater flow might be more amenable to application of empirical 

conceptual storage-discharge models that relate catchment climate, geology and morphology to 

the shape of the recession hydrograph. W3RA-LUM represents groundwater flow using a linear 

reservoir whose drainage characteristics are represented by the baseflow recession constant kbf

and were estimated from analysis of streamflow data for several hundred small upland 
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catchments in Australia. The aim of this article was to obtain an empirical relation between kbf

and selected variables describing climatic and physical catchment characteristics to spatially 

estimate kbf from readily available climatic and physical datasets at the pan-tropical scale.  

Groundwater flow theory, streamflow separation analysis and statistical regression techniques 

in 167 tropical and sub-tropical catchments were used to determine the best predictors for kbf.

The latter proved to be related primarily to climatic characteristics at the catchment scale, such 

as catchment aridity and mean annual rainfall, whereas catchment physical characteristics were 

of secondary importance. This finding was partly considered as a justification for the use of the 

grid cell as the spatial modelling unit and the simplified representation of a ‘catchment’, thereby 

avoiding complex grid and vector model hybrids to emulate catchment boundaries. 

Chapter 5 Model description, pan-tropical parameterisation and evaluation 

This chapter provides a condensed description of the W3RA-LUM model including modelling 

philosophy, the hydrological processes modelled and their corresponding equations, spatial 

representation, data requirements and previous applications. It describes the structural 

modifications to model the effects of LUCC on partition of infiltration and runoff according to the 

U.S. Soil Conservation Service Curve Number Method (SCS-CN; USDA, 1986). The SCS-CN 

method is currently the only method for global application of these scenarios that has a strong 

empirical basis and is responsive to soil type and degradation (or improvement) scenarios. Soil 

condition is considered in the SCS-CN method by including the effects of cover type and soil 

treatment (e.g., tillage) on infiltration and runoff. Soil condition is typified as good, fair or poor 

hydrologic condition, implying a low, moderate or high runoff potential respectively. To 

characterise soil hydrologic condition pan-tropically, rainfall corrected negative trends of 

satellite-derived Normalized Vegetation Index (NDVI) over the period 1981–2003 are used as a 

proxy to identify areas with severe land degradation (Bai et al., 2008). The chapter also includes 

the evaluation of W3RA-LUM outputs using streamflow observed in catchments with a drainage 

area <10,000 km
2
 (i.e., commensurate with the modelling grid scale) and streamflow observed 

in large basins. 

Chapter 6 Modelling the pan-tropical impact of LUCC and surface degradation on dry 
season flows and comparison with empirical observations at sites across the tropics 

Peña-Arancibia, J. L., M. Mulligan, L. A. Bruijnzeel and A.I.J.M van Dijk (in prep.), Pan tropical 
modelling of the effects of land use and land cover change on dry season flows. Agriculture 
Ecosystems & Environment, manuscript in preparation.  
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The hypotheses regarding the streamflow impacts of deforestation or forestation including 

impacts on surface soil condition are tested in this chapter. The scenario modelling approach is 

described in detail. For situations B and D depicting changes in soil condition, surface runoff 

related model parameters are modified following a Soil Conservation Service Curve Number 

(SCS-CN) method, tailored for tropical soils as typified by the FAO. Two types of analyses are 

conducted: (i) soil and vegetation changes are used in a sensitivity analysis to determine the 

impacts of LUCC pan-tropically and in locations for which there is published observational 

evidence of the hydrological impacts of LUCC and (ii) ‘what if’ scenarios are used to test the 

respective hypotheses for different forest cover realisations.  

Spatial maps of streamflow metrics are derived to identify ‘hotspots’ in which LUCC may 

produce important dry season flow regime alterations. Results from pan-tropical modelling using 

both current forest cover and future forest cover maps showed areas with reduction in 

streamflow for some of the driest months after forest removal and advanced soil degradation, 

despite the corresponding decreases in evapotranspiration due to deforestation. These areas 

included: Central America, northern South America, the Andes, Bolivia, Brazil, the Caribbean, 

Congo, Gabon, Tanzania, Ethiopia, South Africa, Madagascar, India, Bangladesh, and several 

countries in Southeast Asia. Similarly, but using modelling results from pre-agricultural forest 

cover and current forest cover maps, areas with similar climatic and biophysical characteristics 

but deforested and/or degraded according to Bai et al. (2008) were then identified for forestation 

with associated  potential for recovery of infiltration. Some of the areas coincided with areas 

targeted by ongoing reforestation and restoration initiatives (cf.Minnemeyer et al., 2011; 

http://www.wri.org/project/forest-landscape-restoration) and the map of Lepers et al. (2005) 

showing the main areas of rapid forest cover changes over the period 1980–2000. 
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We used daily rainfall and streamflow time series from two large catchments in the seasonal tropics of

Queensland, Australia to investigate the hydrological impacts of woodland clearing. The Comet catch-

ment (16,440 km2) had 45% of the native woodland cleared during the mid-1960s. In the Upper Burdekin

catchment (17,299 km2) clearing decreased native woodland extent from 83% to 58% between 1998 and

2009. An earlier modelling study concluded that clearing in the Comet catchment increased annual

streamflow by more than 40%. Here, several published inference methods to separate land use effects

from climate variability were applied. Trend analysis of daily rainfall and streamflow data showed that

interannual changes in mean streamflow in the Comet catchment were mostly due to changes in rainfall.

In particular, a series of La Niña events after clearing led to an unusual lack of dry periods and an appar-

ently associated temporary increase in runoff coefficient. The overriding importance of climate variability

was further confirmed using a conceptual framework that was used to interpret changes in the long-term

coupled water–energy budget. Even so, there was some evidence for a slight increase in streamflow for

the first few years after clearing. Fitting a Budyko-type model for two climatically similar pre- and post-

clearing periods (1920–1953 and 1979–2007) did not suggest a considerable change in the catchment

water balance after clearing. Analysis of daily streamflowmetrics did reveal some changes however, with

enhanced peak flows and reduced low flows. In the Upper Burdekin catchment, trend analysis revealed a

change in baseflow dynamics after clearing, while event storm flow for large rainfall events increased. In

summary, woodland clearing in northern Queensland appears to have had a smaller impact on mean and

interannual streamflow than might be expected from studies at sites and in small experimental catch-

ments, but changes in daily streamflow patterns do suggest a modest change in catchment dynamics.

Crown Copyright Ó 2011 Published by Elsevier B.V. All rights reserved.

1. Introduction

There is an extensive body of hydrological literature dealing

with impacts of land use and land cover change (LUCC) on small

(i.e. <1 km2), mainly temperate experimental catchments (Bonell

and Bruijnzeel, 2005; Brown et al., 2005; Peel, 2009). In such con-

trolled conditions, total annual water yield, infiltration and

groundwater recharge appeared to increase proportionally to the

area of forest removed (e.g. Brown et al., 2005; Van Dijk and

Keenan, 2007). Most of the increase occurred as baseflow, as long

as surface infiltration characteristics were maintained during and

after forest conversion (Bruijnzeel, 1990, 2004).

There are several scale related differences that may preclude

the direct verification in larger catchments (>500 km2) of results

in small experimental, these include: (i) climate gradients; (ii)

the mosaic of land uses; (iii) vegetation types and (iv) spatially var-

iable soils and geology across the catchment, among others

(Blöschl et al., 2007; Donohue et al., 2010).

There are few studies of LUCC impacts on streamflow (Q) in

large tropical catchments (>10,000 km2), their results often con-

trast those observed in small catchments in that not all show in-

creased streamflow after forest clearing (Table 1). In some of the

studies, the increase in streamflow was not attributed primarily

to changes in vegetation. For example, Bruijnzeel (2004) argued

that most of the observed 11% water yield increase in the Citarum

River catchment in Java, Indonesia from 1979 to 1986 (Van der

Weert, 1994) could be ascribed to a concurrent considerable in-

crease in compacted roads and settlements (cf. Sidle et al., 2004;

Ziegler et al., 2001, 2007; Negishi et al., 2008), instead of changes
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in evapotranspiration (ET) due to forest conversion into irrigated

rice fields (which may have similar or higher water consumption

than forest). Large-scale weather patterns may be a cause of the

24% increase in streamflow from 1979 to 1998 in the Tocantins ba-

sin after LUCC (Costa et al., 2003; Linhares, 2005). Although periods

pre- and post-LUCC were climatically similar, Garcia and Mechoso

(2005) observed an increase in mean annual streamflow in all ma-

jor rivers in South America (including the Tocantins) associated to

changes in the intensity of the South American monsoon system,

this increase coincided in the Tocantins with increases in stream-

flow after LUCC. Trancoso (2006) also attributed the trends in ob-

served streamflow in Amazon tributaries in the area known as

the ‘deforestation arc’ (cf. Morton et al., 2006) to climatic changes

and not to LUCC effects. Wilk et al. (2001) and Linhares (2005) did

not find changes in mean annual streamflow in the Nam Pong

catchment (Thailand, 1969–1995) and the Ji-Paraná catchment

(south-western Amazonia, Brasil, 1978–2000) after 63% and 50%

of the original forest coverage was removed respectively. Con-

versely, Zhou et al. (2010) found that 37% afforestation in Guan-

dong Province in China did not reduce streamflow (1993–2006)

as would have been inferred from small catchment experiments.

In recent decades, clearing rates in the seasonal tropics (i.e.

areas in the tropics with marked rainfall seasonality, Peel et al.,

2007) have been comparable to those observed for humid tropical

forests (FAO, 1993; Lepers et al., 2005). According to UNESCO

(2009) most population growth will occur in the tropics. Hence,

the proximity of seasonal tropical forests to densely populated

areas, extraction pressures and their often rich agricultural soils

make them more vulnerable to deforestation than their humid

counterparts (e.g. Songer et al., 2009). Understanding of the LUCC

effects on catchment streamflow is vital to inform water and land

use management (e.g. Calder, 2007; McVicar et al., 2007). In the

seasonal tropics, the distribution of streamflow is more important

than total annual water yield for sustaining aquatic and riparian

ecosystems, and agricultural and industrial activities (e.g. Bruijn-

zeel, 2004; Foley et al., 2005). Rapid agricultural development

may lead to changes in hydrological process dynamics. In catch-

ments where human productive activities have taken place for

decades, soils may have become disturbed to the extent that top-

soil porosity and infiltration capacity are critically reduced (Alegre

and Cassel, 1996; Negishi et al., 2008), leading to enhanced

overland flow occurrence and possibly decreased groundwater

recharge (Ziegler et al., 2006). If continued over a sufficiently long

period, as happens in many agricultural areas (e.g. Bruun et al.,

2009; Ziegler et al., 2009), this topsoil degradation, in addition to

intensification of agricultural activities, may produce a shift in

streamflow regime, with increased peaks during the rainy season

and decreased flows during the dry season (Madduma Bandara

and Kuruppuarachchi, 1988; Bruijnzeel, 1990, 2004; Viramontes

and Descroix, 2003; Rodriguez et al., 2010).

Clearing of seasonal tropical woodlands in Queensland (Austra-

lia) has proceeded at a fairly steady rate of around 1% annually for

the last 41 years, and has exceeded or at least sustained these rates

in the two last decades (Fensham and Fairfax, 2003). Several plot or

small catchment studies in the Australian seasonal tropics support

the notion of increased streamflow after clearing of native vegeta-

tion (e.g. Tullberg et al., 2001; Rohde, 2005; Bonell and Williams,

2009). In particular, a paired catchment experiment conducted

from 1965 to 2004 in small catchments (�15 ha) of the Fitzroy Riv-

er Basin showed that streamflow from two catchments increased

by 9–11% after clearing (Thornton et al., 2007).

Siriwardena et al. (2006) investigated the effects of deforesta-

tion in a large catchment in central Queensland. The Comet catch-

ment (16,440 km2) had 45% of the native woodland cleared during

the mid-1960s. Rainfall (P) and streamflow for periods pre (1920–

1949) and post-deforestation (1970–1999) were compared using

statistics on mean annual averages and daily flow duration curves.

Results indicated that the post-clearing period had a statistically

significant (5% level) increase of 78% in mean annual streamflow,

although some proportion could be explained by a concurrent

8.4% increase in rainfall. Without going into detail with respect

to the models, two modelling approaches were used to separate

climate variability from LUCC effects (see Siriwardena et al., 2006

for details). An annual rainfall–runoff relationship and a daily

conceptual model were calibrated to simulate annual or daily

streamflow over the period pre-LUCC and then simulations were

conducted for the period post-LUCC, with a 40–58% increase in ob-

served mean annual streamflow in the second period being attrib-

uted to LUCC. The authors noted that only 1 year with much higher

than average rainfall occurred in the calibration period pre-LUCC

and consequently both models simulated streamflow poorly in

‘wet’ periods (Siriwardena et al., 2006). The period after deforesta-

tion, which was used to establish differences in streamflow attrib-

uted to LUCC, had very high rainfall in northeast Queensland linked

to La Niña conditions from 1973 to 1976 (BOM, 2010; Fu et al.,

2010). As a result, climatic conditions in this period may have

Table 1

Studies and methodologies implemented to investigate the effects of land use/land cover change (LUCC) on streamflow in large (>10,000 km2) tropical catchments. Methods refer

to: TSA, time-series analysis; MOD, modelling.

Catchment (Country) Area

(km2)

Forest cover

change (%)

Period pre- and

post-LUCC

Method(s) Effects on streamflow

(% change)

Reference

Pasak River (northern Thailand) 14,500 ÿ50 1955–1980a TSA No change Dyhr-Nielsen (1986)

Citarum River (west Java, Indonesia) 4133 ÿ50 1922–1929 TSA, MOD Increase (11%) Van der Weert (1994)

1979–1986

Tocantins River (central Brazil) 767,000 ÿ19 1949–1968 TSA, MOD Increase (24%) Costa et al. (2003)

1979–1998

Nam Pong River (north-eastern Thailand) 12,100 ÿ63 1957–1965 TSA, MOD No change Wilk et al. (2001)

1969–1995

Comet River (central Queensland, Australia) 16,440 ÿ45 1920–1949 TSA, MOD Increase (40%) Siriwardena et al. (2006)

1970–2000

Ji-Paraná (southwestern Amazonia, Brazil) 33,012 ÿ50 1978–2000b TSA No change Linhares (2005) and

Rodriguez et al. (2010)

Pearl river and East, North and West Rivers

(Guandong Province, China)

179,752 +37 1965–1986 TSA No change Zhou et al. (2010)

1993–2006

a No distinctive pre- and post-LUCC periods.
b No distinctive pre- and post-LUCC periods but transitory changes of LUCC and streamflow.
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caused most of the observed increase in streamflow after

deforestation.

In this study, we aim to isolate LUCC effects on streamflow by

using several approaches for two large catchments in the seasonal

tropics of Queensland Australia, i.e. the Comet catchment and the

Upper Burdekin catchment (17,299 km2). Multiple approaches

may well provide corroborating evidence that can be used to

differentiate LUCC effects from climate variability in observed

changes of streamflow. The Comet catchment is revisited to further

investigate the effect of the ‘wet’ period in the 1970s on the ob-

served increase in streamflow and the subsequent role of LUCC.

Section 2 of this paper provides a description of catchments,

data and associated LUCC. The next section describes the method-

ology used (Section 3). Results are presented and analysed (Section

4), the findings are discussed in the international scientific context

(Section 5) and finally conclusions are drawn (Section 6).

2. Catchment description and data

2.1. The Comet catchment

The Comet River (drainage area 16,440 km2) is a tributary of the

Fitzroy River in central Queensland (Fig. 1a). Elevation ranges from

150 to 1223 m a.s.l. Soils in the lowlands and floodplains consist

mainly of cracking clayey vertisols (FAO soil classification, IUSS

Working Group WRB, 2006). The uplands have mainly duplex

Luvisols. Climate is dry sub-humid with summer rainfall domi-

nance (Köppen-Geiger type Cfa/BSh) (Peel et al., 2007). Mean

annual rainfall over 1920–2007 was 650 mm yÿ1, with 60% of the

rain occurring between December and March. Rainfall varies across

the catchment from 520 to 900 mm yÿ1 and there is a marked

interannual variability. Mean annual Morton-type potential

evaportranspiration (PET) is 1680 mm yÿ1 and is in phasewith rain-

fall. Catchment averaged actual evapotranspiration estimated from

remote sensing (Guerschman et al., 2009) for 2002–2008 was

620 mm yÿ1. Streamflow is ephemeral, occurring generally from

December to April and peaking in February. The mean annual aver-

age streamflow in 1920–2007 was 22.1 mm yÿ1 at gauging station

130504B (Fig. 1a).

LUCC have been described in detail by Siriwardena et al. (2006).

In summary, removal of 45% of the native woodland vegetation

(Acacia and Eucalypt open woodlands) for cattle ranching and

cropping occurred over a short period in the mid-1960s and clear-

ing of regrowth has continued to present. Sequential maps of forest

cover classification from the National Carbon Accounting System

(considered forest if a 0.2 ha has >20% and 2 m height forest cover;

Furby, 2002) show that an additional 10% of native vegetation or

plantation forest was cleared between 1980 and 2009 (Fig. 2).

The majority of forest clearing was performed using conventional

methods (bulldozers and chain). Fire, re-clearing and/or blade-

ploughing is generally applied to control the vigorous regrowth

after the initial clearing (Scanlan and Anderson, 1981).

Water extractions for irrigation purposes from the Comet River

are considered to have very small impact on streamflow through-

out the study period (see Siriwardena et al., 2006). However, there

was an increase in farm dam construction in the post-clearing

period and thus an increase in the catchment storage capacity.

The implications of combined impact of farm dam expansion and

increase in water demand for irrigation are discussed in Section 5.

Daily rainfall data for 1920–2007 were obtained from the inter-

polated 0.05° resolution gridded rainfall data set known as ‘SILO’

(Jeffrey et al., 2001). Morton-type areal PET values (Morton,

1983; Chiew and McMahon, 1991) for 1957–2007 were derived

using climate variables from SILO and prior to 1957 from Rayner

et al. (2004). This formulation of PET was selected over physically

Fig. 1. (a) The Comet River catchment, active rainfall stations and streamflow gauge 130504B. (b) Idem for the Upper Burdekin catchment with streamflow gauge 120110A.

Forested areas correspond to 2009. Note the different scale bars.
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based formulations as all input data (specifically wind speed;

McVicar et al., 2008) forcing are not available for the time series

in the Comet catchment.

Streamflow (Q) data were provided by the Queensland Depart-

ment of Environment and Resource Management (DERM). In sum-

mary, discontinuous records from three gauging stations were

used to construct a continuous daily streamflow time series for

the period 1920–2007; the records begin with the daily-read gauge

130501A (operational from August 1919 to October 1973). In 1971

the station was moved 6.4 km upstream and the record continued

as 130504A (operational from August 1971 to January 2004); in

2004 the station was relocated back to its original location and

the record continued as 130504B. Siriwardena et al. (2006)

checked the influence of gauge relocation from station 130501A

to 130504A for a period (February 1972 to May 1973) in which

both gauges were operational by visually comparing daily stream-

flow time series and concluded that this did not affect the consis-

tency of the record. Following this procedure, the same was

concluded by the present study for stations 130501A and

130504B for daily streamflow time series from February 2003 to

January 2004. Siriwardena et al. (2006) noted that the records for

the unusually wet period between 1950 and 1956 were unreliable

because the very high daily flow rates recorded during that time

exceeded up to six times the measurements used to construct

the rating curve. These data were excluded from the present anal-

ysis as well.

2.2. The Upper Burdekin catchment

The Upper Burdekin catchment comprises all the drainage area

above the Burdekin Falls Dam (40,000 km2). Here we define the

Upper Burdekin catchment as the area above gauging station

120110A (17,299 km2, Fig. 1b). Elevation ranges from 350 to

900 m a.s.l. Soils vary considerably, with duplex Luvisols and

Solonetz dominating the lowlands and Ferralsols and Acrisols the

uplands. Climate ranges from tropical sub-humid closer to the

Great Dividing Range (Köppen-Geiger type Cwa), to semi-arid in

the far west of the interior (Köppen-Geiger type BSh) (Peel et al.,

2007). Mean annual rainfallover 1966–2009 was 690 mm yÿ1, with

70% occurring between December and March. Rainfall varies across

the catchment from 560 to 1000 mm yÿ1 and shows marked inter-

annual variability, occurring mostly as cyclonic or monsoon-driven

events followed by extensive dry periods (Roth et al., 2002). Mean

annual Morton-type areal PET is 1930 mm yÿ1 and exhibits season-

ality in phase with rainfall. Remotely sensed actual evapotranspi-

ration (Guerschman et al., 2009) for 2002–2008 was 550 mm yÿ1.

Streamflow occurs from December to April, peaking in February.

Although flows from May to November are low, the Upper Burde-

kin only ceases to flow in very dry years. The mean annual average

streamflow between 1966 and 2009 was 99 mm yÿ1 at gauging

station 120110A (Fig. 1b).

The Upper Burdekin catchment had 83% forest cover in 1980.

From 1999 to 2009 the catchment experienced an average annual

clearing rate of 1.9%, decreasing the forest cover to 58% (Fig. 2).

Clearing has been undertaken to support grazing, although manag-

ing regrowth has proven to be a challenge (Roth et al., 2002). Cattle

numbers vary greatly across the catchment, with an average

stocking density of 0.09 head haÿ1.Gridded daily rainfall and Mor-

ton-type PET were derived from the same SILO data set mentioned

before. Continuous daily streamflow records from station 120110A

were sourced from the Queensland Department of Environment

and Resource Management (DERM).

3. Methods

Different published methods to separate land use effects from

climate variability were applied by considering the length of

hydroclimatic time series in both catchments. The length of time

series in the Comet catchment (1920–2007) permitted the investi-

gation of changes in mean annual streamflow (Q) in pre- and post-

LUCC periods. On the other hand, shorter records (1966–2009) but

detailed land cover mapping enabled the assessment of changes in

daily Q descriptors from daily data and their relationship with

transitional LUCC.

To discriminate between fast and slow runoff generating pro-

cesses, Q was separated into storm flow (QSF) and baseflow (QBF)

using a non-linear reservoir model, combining forward and back-

ward recursive filters (Wittenberg, 1999; Van Dijk, 2010a). Daily

records of Q, rainfall (P) and PET (all in mm dÿ1) were summed to

give annual totals per water year (1 October to 30 September).

We performed the following analyses in the Comet for periods

pre- and post-LUCC : (i) double mass curves and time series anal-

ysis of P and Q (Section 3.1); (ii) a conceptual framework based on

the long-term coupled water–energy budget at interannual scales

(Tomer and Schilling, 2009) (Section 3.2); (iii) a top-down Bud-

yko-type modelling approach (Zhang et al., 2008) (Section 3.3);

(iv) comparison of metrics of daily Q (Yilmaz et al., 2008; Rodriguez

et al., 2010) (Section 3.4) and; (v) comparison of event storm flow

(Van Dijk, 2010b) (Section 3.5). Due to the shorter hydroclimatic

time series available (i.e. 1966–2009) only methods (iv) and (v)

could be used in the Upper Burdekin. In method (v), detailed land

cover mapping available for several years (Fig. 2) permitted analy-

sis of temporal correlations between woodland cover extent,

climate descriptors and metrics of daily Q.

3.1. Double mass curve analysis and trend analysis

Streamflow changes in the Comet catchment were investigated

by constructing double mass curves of annual rainfall (P) vs.

streamflow (Q). Assuming that P data is consistent over the analy-

sis period, changes in the slope of the double mass curve can

indicate (Siriwardena et al., 2006): (i) change in gauging station

and/or rating curve, (ii) errors in the data, and/or (iii) changes in

catchment conditions and/or (iv) climate that affect the rainfall–

runoff relationship. Break points in slope were found using the

methodology of Ryan and Porth (2007). The seasonal non-paramet-

ric Mann–Kendall test (10%, 5% and 2.5% significance levels; Hirsch

et al., 1982) was used to detect monotonal trends in P and Q for

periods in which a change in slope was observed. The seasonal ver-

sion of the test was chosen instead of the annual time step in order

to eliminate serial correlation due to the high seasonality of both P

and Q (cf. Yue et al., 2002; Yue andWang, 2004). The rate of change

was estimated using the Sen-slope method (Sen, 1968).
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Fig. 2. Time-series of percentage forest cover for the Comet and Upper Burdekin

catchments. Forest cover percentages estimated from the NCAS dataset (Furby,

2002). Markers indicate years with available forest cover maps.
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3.2. Tomer–Schilling framework

Tomer and Schilling (2009) developed an elegant coupled

water–energy balance framework that requires long-term time

series of rainfall (P), streamflow (Q), and PET to assess if unused

available energy and water were related to climate and/or to land

management in agricultural catchments for the mid-Western US.

Results were used to advance a conceptual framework that quali-

tatively discriminates whether the dominant drivers of observed

changes are related to LUCC and/or climate. The framework relat-

ing changes in LUCC and/or climate to the observed changes in

the excess amounts of water (Pex) and excess amounts of energy

(Eex) as fractions is illustrated in Fig. 3. The catchment water

balance can be written as:

DS ¼ P ÿ ET ÿ Q : ð1Þ

Assuming that there is a ‘steady state’ water balance in the long-

term, i.e. when catchment storage changeDS (mm) can be neglected,

long-termmean evapotranspiration ET (mm) can be estimated from

long-term mean rainfall P (mm) and streamflow Q (mm) as:

ET ¼ P ÿ Q : ð2Þ

Interannual intervals in which catchment storage DS may be con-

sidered minimal were selected from the baseflow time series by

choosing periods that began and ended with very low baseflow.

Further, excess amounts of overlinePex and Eex in each interval are

defined as (Tomer and Schilling, 2009):

Pex ¼
ðP ÿ ETÞ

P
; and ð3Þ

Eex ¼
ðPET ÿ ETÞ

PET
: ð4Þ

The Tomer–Schilling framework assumes that LUCC will affect

ET but not P or PET , acknowledging that effects on P and PET can

be considered indirect at this scale and of second order when

compared to changes in ET in the woodland environment of the

Comet. Thus LUCC will cause ecohydrological shifts towards

increased Pex and Eex, or towards decreased Pex and Eex. Changes

in climate are required to cause increased Pex and decreased Eex,

due to the temporal increase in the P=PET ratio and vice versa.

3.3. The Budyko framework

The Fu (1981) formulation of the Budyko framework (Budyko,

1974) is given as:

ET

P
¼ 1þ

PET

P
ÿ 1þ

PET

P

 !w" #

1
w

; ð5Þ

and was used to interpret whether the parameter related to evapo-

transpiration efficiency (w) changed in each interval. Combining

Eqs. (2) and (5) and with a = 1–1/w so that a varies between 0

and 1, one obtains the following expression (Zhang et al., 2008):

Q ¼ P
1

1ÿa þ PET
1

1ÿa

� �

ÿ PET: ð6Þ

The parameter a can be interpreted as a catchment-level vegetation

ET efficiency: a higher value indicates a greater ability of the catch-

ment to retain and evaporate P, for example because of greater root-

ing depth (e.g. Zhang et al., 2004). Values of a are obtained for each

interval by minimising the squared difference between observed

and simulated Q .

They were calculated for intervals corresponding to the

intervals pre-LUCC (1920–1953) and used to simulate Q (Q sim) in

intervals in the post-LUCC period (1970–2007) using Eq. (6). The

total change in streamflow due to LUCC effects can then be esti-

mated as:

DQ LUCC ¼
X

n

i¼1

Qobs;i ÿ
X

n

i¼1

Q sim;i ; ð7Þ

where DQ LUCC is the change in total streamflow due to vegetation

changes, Qobs is the streamflow observed in each interval of the

post-LUCC period, and Q sim is the simulated streamflow in each

interval, whereas n is the number of intervals considered in the

analysis.

3.4. Yilmaz–Rodriguez daily streamflow metric analysis

Rodriguez et al. (2010) adapted the method developed by Yil-

maz et al. (2008) to detect changes in streamflow regime associ-

ated with different hydrological processes resulting from LUCC.

Yilmaz et al. (2008) partitioned the daily flow duration curve

(FDC) in segments corresponding to: (i) high flows (exceedance

probability EP < 0.02); (ii) intermediate flows (0.2 6 EP 6 0.7);

and (iii) low flows (EP > 0.7). Daily Q (ML dÿ1) were used to avoid

negative values for log-transformed records <1.

Following Rodriguez et al. (2010), five streamflow (Q) regime

summary metrics were derived by partitioning the FDC. Three of

these five metrics corresponded to the respective volumes of Q

(VFLOWx in ML) belonging to each segment of the FDC curve:

VFLOWx ¼
X ðQ i þ Q iþ1Þ � Df

2
; ð8Þ

where Qi is the ith probability discharge, Df is the frequency incre-

ment and the subscript x corresponds to high (high), intermediate

(int) and low flows (low). High flow volume (VFLOWhigh) is associ-

ated to catchment response from large rainfall events. Intermediate

flow volume (VFLOWint) is associated to the slower catchment

response from moderate rainfall events and also to intermediate-

term baseflow response. The low flow volume (VFLOWint) is related

to the long-term baseflow response (Yilmaz et al., 2008).

Decrease in excess water Increase in excess water

Pex

E
e
x

Increase in excess energy
Increase in excess energy

Decrease in excess water

Increase in excess energy

Increase in excess water

Increase in excess energy

Fig. 3. Conceptual model based on the long-term coupled water–energy budget at

interannual scales associated with changes in climate and land use (adapted from

Tomer and Schilling, 2009). P refers to rainfall, areal PET to potential evapotrans-

piration, Pex and Eex .refer to excess amounts of water and energy respectively.

Other types of land management which increase (e.g. conservation tillage, removal

of perennials) or decrease ET (e.g. conservation cover, increased forages) are

encompassed by deforestation or afforestation, respectively (Tomer and Schilling,

2009).
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In addition, the total volume of log-transformed low flows

(LFLOWlow) was computed to place more weight on lower values

of low flows, thus giving a fourth metric:

LFLOW low ¼
X ðlogðQ iÞ þ logðQ iþ1ÞÞ � Df

2
: ð9Þ

Finally, log-transformed values were also used to calculate a

fifth metric, the slope of the intermediate flows (SLOint) within

the FDC:

SLOint ¼
logðQm1Þ þ logðQm2Þ

Df
; ð10Þ

where Qm1 and Qm2 are the 0.2 and 0.7 exceedance probability

discharge, respectively. This was used to infer changes in catchment

flow recession. Higher (steeper) slope values would suggest faster

catchment recession and lower slopes are associated with more

sustained baseflow. Metrics were subsequently grouped for each

water year, adding volumes and averaging SLOint.

For the Comet catchment, long-term LUCC impacts on Q signals

were compared by using probability of exceedance curves for Q

signals for periods pre- and post-LUCC.

In the Upper Burdekin catchment, to assist in the interpretation

of temporal changes due to LUCC impacts on Q signals, lagged non-

parametric Spearman correlations were computed between

signals, climate descriptors and percentage forest cover extent

(%FCE) values. Linear regression analysis was used to interpret

relations between signals, climate descriptors, and %FCE. The stron-

gest predictors were combined through stepwise multiple regres-

sion equation that included %FCE. The following climate

descriptors were computed: mean annual rainfall (MAP, mm yÿ1),

mean annual PET (MPET), a humidity index (HI =MAP/MPET) and

a proxy for mean annual P intensity MAPI (mm yÿ1) defined as:

MAPI ¼ MAP �
RP

TD
; ð11Þ

where RP is the sum of P for days with P > 10 mm each and TD is the

sum total of days with rainfall. The threshold value of 10 mm was

chosen because inspection of daily flow records showed that this

amount of P usually triggered QSF. In addition standard Mann–Ken-

dall trend analysis (2.5%, 5% and 10% significance level) was

performed on signals, climate descriptors and %FCE.

3.5. Event storm flow for periods pre- and post-LUCC

To investigate the impact of LUCC on faster hydrological compo-

nents of the hydrograph, event rainfall and storm flow for periods

pre- and post-LUCC were computed following the procedure

described by Van Dijk (2010b), based on Wittenberg (1999).

Following linear storage theory a weighted average storm flow

recession constant kSF (d
ÿ1) was calculated:

kSF ¼ ÿln

P

Q SFðiþ 1Þ
P

Q SFðiÞ

� �

: ð12Þ

Total event rainfall Pev(i) (mm) for the event peaking on day t = i

was subsequently estimated as:

PeV ðiÞ ¼
X

i

t¼iÿ2

PðiÞ; ð13Þ

where t was suggested by Van Dijk (2010b) as i ÿ 2 to account for

antecedent P effects. Total event storm flow Rev(i) (mm) was

estimated as:

ReV ðiÞ ¼
X

tn

t¼iÿ2

Q SF þ SRðtnÞ ¼
X

tn

t¼iÿ2

QQF þ
Q SFðtn þ 1Þ

1ÿ eðÿkSF Þ
; ð14Þ

where tn is the day on which QSF(tn) is one tenth of QSF(i). This was

done in Eq. (14) to avoid inclusion of QSF generated by subsequent

Pev. The term SR(tn) (mm) is the estimated storm runoff still in

storage at the end of day tn based on linear reservoir theory Van Dijk

(2010b).

In the Comet catchment, we used daily rainfall (P) and daily

streamflow (Q) from 1920 to 1949 and 1981–2007 to represent

pre- and post-LUCC conditions, respectively. In the Burdekin

catchment, 1980–1985 represented pre-LUCC and 2004–2009

post-LUCC respectively. %FCE did not experience important reduc-

tions within either period (Fig. 3). Differences in Rev during the pre-

and post-LUCC situations were analysed for both catchments using

probability of exceedance curves.

4. Results

4.1. Double mass curve analysis and trend analysis

Double mass curves of annual rainfall vs. annual streamflow for

the Comet catchment are presented in Fig. 4. The slopes for the

periods 1950–1956 and 1971–1980 are markedly higher (0.13

and 0.08 respectively) than those associated with the other periods

distinguished (0.023, 0.03 and 0.025 for 1920–1949, 1961–1970

and 1981–2007 respectively). Note that data for the very wet per-

iod from 1952 to 1958 were considered unreliable and were not

used in any analysis (see Section 3.1). The higher streamflow (Q)

production in 1971–1980 occurred after land clearing was

completed in the mid-1960s. Table 2 shows the rainfall (P) and Q

characteristics for 1920–1949, 1961–1970, 1971–1980 and 1981–

2007. The 1970s were particularly wet, with annual rainfall

20–30% higher than the other periods. Streamflow was 60–70%

higher and the annual runoff coefficient for 1971–1980 was

roughly twice the value observed during other periods (Table 2).

The double mass curve analysis and summary statistics in Table

2 show that 1981–2007 was climatically similar to the pre-LUCC

period in contrast to 1971–2007. Therefore 1981–2007 was con-

sidered in further analysis when comparing pre- and post-LUCC

(see also Section 4.5 for details on rainfall variability between

pre-LUCC and 1981–2007).

Trend analysis was performed for the periods in Fig. 4. 1971–

2007 was examined separately to assess the influence of the wet

1970s on temporal trends for the entire post-LUCC period. No

significant (10% significance level) temporal trends in P or Q were

detected for 1920–1949 whereas statistically significant negative

(5% significance level, but not 2.5%) trends were detected for P

for 1971–2007 and 1981–2007 and for Q for 1971–2007 period

(2.5% significance level).

Given the high rainfall and streamflow seasonality, the Mann–

Kendall test was performed for time series of each month

separately in the periods 1971–2007 and 1981–2007 respectively

to aid in the interpretation of changes during the dry and/or wet
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Fig. 4. Double mass curves of cumulative annual rainfall (P) vs. streamflow (Q) for

the Comet catchment. Periods with a marked change in slope are delimited with

dashed lines.
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season. For 1971–2007, negative trends (10% significance level, but

not 5%) in P were detected for the wet months of December and

February. In addition, negative trends in streamflow were found

for December–March and July–September (10% significance level,

but not 5%). However, significant trends (10% significance level)

were largely absent after separating the wet 1970s from the entire

post-LUCC data set. When considering 1981–2007, only the drier

months of August and October presented a significant negative

trend (10% significant level, but not 5%) in P and November for Q

(5% significant level, but not 2.5%).

4.2. Tomer–Schilling framework

Thirteen intervals in which change of storage (DS) within may

be considered to have been minimal impact were identified by

plotting mean annual baseflow time series (not shown but can

be easily identified in Fig. 5a) and choosing periods that began

and ended with very low or no baseflow. These intervals are shown

in the upper-x axis in Fig. 5a, as well as the streamflow (Q) time

series and averages for each interval. Unused amounts of water

(Pex) and energy (Eex) were estimated for each interval as shown

in Fig. 5b–d.The colour coded arrows in Fig. 5b–d indicate the

direction in the shifts attributed to the changes in climate and/or

LUCC depicted in Fig. 3 (Tomer and Schilling, 2009). Fig. 5b indi-

cates that changes in climate may have dominated the shifts ob-

served in 1920–1953 (intervals 1–5), with a short wet cycle

(1920–1926 to 1926–1931), a dry cycle (1926–1931 to 1938–

1948) being followed by a wet cycle (1938–1948 to 1948–1953).

Similarly, Fig. 5c shows that the shift observed in 1958–1964 to

1964–1967 was dominated by the occurrence of a dry cycle. The

period immediately after extensive clearing of native vegetation

(1964–1967 to 1967–1970) exhibited a shift consistent with LUCC,

with a distinct decrease in ET (Fig. 5c). Finally, 1970–1979 to 2003–

2007 showed mainly an overriding influence of climate again, with

a decrease in excess water and an increase in excess energy, and

therefore a decrease in the P=PET ratio (Fig. 5d).

4.3. The Budyko framework

The influence of vegetation cover on overall catchment-wide

evapotranspiration (ET) following Zhang et al. (2008) as expressed

by the parameter a, which may be considered as a proxy for evapo-

transpiration efficiency (cf. Eq. (6)), showed a slight decrease dur-

ing the post-LUCC period. Five out of the 13 intervals distinguished

during the entire time series (Fig. 5a), were considered to have an

average a representing equilibrium conditions prior to LUCC

(1920–1953, intervals 1–5). Optimised a values for these five inter-

vals ranged 0.698–0.736 and had a mean of 0.718. A further five

intervals between 1970 and 2007 (9–13) and four between 1979

and 2007 (10–13) were considered to represent an average post-

LUCC a. These intervals are similar to the years in which change

was observed in the slope of the double mass curves in Section

4.1 and provided the opportunity to investigate the effect of the

wet 1970s and a more climatically similar period (1981–2007).

Optimised a values for 1970–2007 had a mean of 0.707 (range

0.694–0.727) and for 1979–2007 had a mean of 0.716 (range

0.694–0.727).

This decrease in a post-LUCC represented an annual average

reduction in ET of 19–24 mm or 3.1–3.8% with an associated in-

crease in streamflow (Q) due to LUCC (Eq. (6)) of 0.17 mm or 1% be-

tween 1970 and 2007 and 0.02 mm or 0.001% between 1979 and

2007.

4.4. Yilmaz–Rodriguez daily streamflow metric analysis

Yearly signals for volume of high flows (VFLOWhigh), intermedi-

ate flows (VFLOWint) and slope of intermediate flows (SLOint) were

computed for the Comet catchment. No data were available to

compute volume of low flows (VFLOWlow) or the log-transformed

low flows (LFLOWlow) because daily flow did not exceed the 0.7

probability of exceedance. Signals were compared for pre- and

post-LUCC effects using exceedance curves. We used the 1981–

2007 post-LUCC period which was more climatically similar to

the pre-LUCC period. Slightly larger values were observed for VFLO-

Whigh during the post-LUCC period (Fig. 6a), whereas somewhat

lower values were observed for VFLOWint (Fig. 6b). The lower slope

SLOint values (Fig. 6c) observed for the post-LUCC period indicates

steeper yearly slopes and thence faster catchment recession.

For the Upper Burdekin, trends of yearly streamflow (Q) signals,

climate descriptors and percentage forest cover (%FCE) were exam-

ined using annual time-step Mann–Kendall test (10%, 5% and 2.5%

significance level). Only the signal associated with baseflow

(LFLOWlow) exhibited a significant negative trend (10% significance

level, but not 5%). Lagged non-parametric Spearman correlations

were computed between signals and %FCE, for which only the years

1998–2009 were used because %FCE remained nearly constant

from 1980 to 1998 (Fig. 3). Maximum correlations were found

for a lag time of 2 years. Results are given in Table 3.

To account for climate variability, simple linear regressions

were performed between signals and climate attributes. Mean

annual precipitation intensity descriptor (MAPI) explained 79% of

the variance in VFLOWhigh, mean annual precipitation (MAP) ex-

plained 73%, 65% and 54% of VFLOWint, VFLOWlow and LFLOWlow,

respectively. MAP also explained 30% of SLOint. Further, these cli-

mate attributes were combined in stepwise regression with vari-

ously lagged values of %FCE to investigate the significance of

vegetation in explaining the remaining variance in signals. Table

Table 2

Characteristics of rainfall and streamflow for the Comet River basin for four different

periods, encompassing pre- and post-clearing and the period of rapid forest clearance

(1961–1970).

Hydrological years

Pre- clearing

1920–1949

Rapid-clearing

1961–1970

Post-clearing

1971–1980

Post-clearing

1981–2007

Rainfall

Mean

(mm yÿ1)

624 586 783 619

Max

(mm yÿ1)

1089 837 919 877

Min (mm yÿ1) 351 225 424 410

Coefficient of

variation

0.24 0.32 0.23 0.19

Streamflow

Mean

(mm yÿ1)

14.3 17.1 41.7 15.4

Max

(mm yÿ1)

81.9 88.4 120.7 88.4

Min (mm yÿ1) 0.0 0.0 0.8 0.9

Baseflow

(mm yÿ1)

2.3 1.6 9.4 2.2

Quickflow

(mm yÿ1)

12.0 15.5 32.3 13.2

Runoff

coefficient

(%)

2.29 2.90 5.72 2.47

Baseflow

index

0.16 0.09 0.22 0.14

Quickflow

index

0.84 0.91 0.78 0.86

Coefficient of

variation

1.23 1.57 0.93 1.24
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4 gives the resulting regression equations. For VFLOWhigh the inclu-

sion of %FCE (zero lag time) improved the coefficient of determina-

tion (r2) from 0.79 to 0.82; the negative sign associated to %FCE

suggested a decrease in %FCE would increase VFLOWhigh. Similarly,

the value of r2 for the relationship with VFLOWint improved from

0.73 to 0.90 after including %FCE (with a lag time of 1 year), this

time with an opposite outcome (i.e. a decrease in %FCE would in

turn decrease VFLOWint). Using a 2 year lag time for %FCE improved

r2 for the relationship with VFLOWlow from 0.65 to 0.93, again pre-

dicting a decrease in flows after decreasing %FCE. The addition of

%FCE did not improve r2 in the LFLOWlow and SLOint equations,

hence these are not show in Table 4.

4.5. Event storm flow for periods pre- and post-LUCC

Rainfall (P) variability was assessed for both pre- and post-LUCC

conditions in the Comet and Burdekin catchments using P fre-

quency distribution plots (Fig. 7a and b). The largest differences

in P between the two periods were observed for P < 5 mm dÿ1 in

both catchments. The associated impact on streamflow (Q) was

small, however, because generally only daily P > 10 mm dÿ1 initi-

ated storm flow in either catchment.

Rainfall distributions in the Comet for the two periods were

fairly similar (Fig. 7a). In terms of mean storm flow coefficient

(Rev/Pev) there was increase post-LUCC from 1.85% to 2.5%. Fig. 7c

shows higher Rev post-LUCC , this increase was uniform along all

runoff event regimes but the very largest, and markedly higher in

lower runoff events (exceedance probability >80%).

There were more events >50 mm dÿ1 in the period post-LUCC in

the Burdekin catchment, 16 events in 2004–2009 against only 6 in

1980–1985 (Fig. 7b). There was an increase in Rev/Pev from 5.6% to

8.4% in the Upper Burdekin catchment. Rev increase was more

marked in higher runoff events (exceedance probability <40%)

and marginal in lower runoff events (exceedance probability

>80%) (Fig. 7d).

5. Discussion

Several previous studies in the tropics that ascribed increases in

streamflow (Q) primarily to LUCC in large catchments

(>10,000 km2) did not account for large-scale weather patterns

including ENSO events (e.g. Richey et al., 1989; Costa et al., 2003).

Richey et al. (1989) concluded that the increase in Q of the Amazon

River at Iquitos was caused by climate variability instead of defor-

estation in the Upstream Andes. The observed increase in the

Tocantins after LUCC (Costa et al., 2003, Table 1) occurred within

a period with strong ENSO-related increase in P (INPE, 2004). The

simultaneity in the dates of Q increase for large basins in South

America (García and Mechoso, 2005) suggests large-scale interdec-

adal climate patterns were also important in the case of the Tocan-

tins and that the role of LUCC should be further investigated (cf.

Linhares, 2005; Espinoza Villar et al., 2009).

In the Comet catchment (16,440 km2), the post-LUCC period

(1971–1980) showed 66% more Q than the pre-LUCC period

(1920–1949) (Table 2). However, 1981–2007 was not very differ-

ent in terms of mean annual rainfall (P), P frequency distribution,

and mean annual Q compared to the pre-LUCC period (Table 2

and Fig. 7a). 1973–1976 experienced the longest sustained period

of La Niña conditions in the instrumental record; the particularly

striking feature of the rainfall during this period was the complete

lack of dry periods (BOM, 2010). The Tomer and Schilling (2009)

coupled water–energy balance framework indicated that climate

exerted an overriding effect on Q by increasing the P/PET ratio, with

Pex increasing from 0.014 to 0.058 from 1967–1970 to 1970–1979

(Fig. 5c and d). On the other hand, the framework also suggested

that a decrease in ET occurred in 1964–1967 to 1967–1970

(Fig. 5c) which could be linked to large scale clearing.

The pre-LUCC for the Budyko-type model did not encompass

the range of climate variability experienced in the 1970s. As a

result, the Budyko-type model underestimated flows during inter-

vals of (very) high Q and overestimated flows during drier years.

This issue was also reported in Siriwardena et al. (2006); both
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models used to quantify changes associated to LUCC simulated Q

poorly in ‘wet’ periods (cf. Vaze et al., 2010). In a study that used

a similar modelling approach to separate climate variability and

LUCC effects in the Nam Pong River in Thailand (12,100 km2), Wilk

et al. (2001) reported an increase in mean annual Q of 15% after

deforestation. However, this increase could not be detected when

one single year with a very low runoff coefficient was removed

from the pre-clearing calibration period.

Based on such considerations, 1979–2007 was deemed more

suitable for use in a predictive modelling exercise for the Comet

basin. Rainfall frequency distributions for the calibration and

prediction periods were very similar (Fig. 7a), and although a

decreasing trend was detected for rainfall (P) after 1981 by the

seasonal Mann–Kendall test, a similar test of monthly P trends re-

vealed that the decreasing trend in P was considered significant in

the dry season month of August and October only (10% significance

level, but not 5%). It is hypothesised that P in these months will

make a small contribution to Q only.

The results of the Budyko framework to estimate total change in

streamflow (Q) due to LUCC effects (Eq. (7)) showed a very small

increase in Q (0.001%) in the Comet basin. Likely causes for the

small estimated effect may be: (i) measurement noise, (ii) spatio-

temporal terrain and climate factors other than P and PET which

are not taken into account in Budyko theory (Donohue et al.,

2007, 2010; Van Dijk et al., 2011) and (iii) expansion of farm dams

and increase in irrigation water use that would offset increases in

Q. The effects of LUCC at smaller scales may well be markedly

higher, but the lack of data prevented a similar analysis at the

sub-catchment scale. Nevertheless, results obtained in nearby

small catchments showed a marked increase in runoff after LUCC

(Thornton et al., 2007).

Results from the Yilmaz–Rodriguez analysis and storm flow for

the Comet catchment reinforced the notion that the catchment has

experienced a change in dynamics (Figs. 6 and 7c). In general,

clearing of Acacia and Eucalypt woodlands enhanced storm flows

of all magnitudes (Fig. 7c) but somewhat decreased slower flows

(Fig. 6b). The decrease in slow flows may be related to a reduction

in catchment soil water storage because of a combination of re-

duced infiltrability and soil compaction in riparian areas and in

perched aquifers during the wet season (Tullberg et al., 2001).

The Yilmaz–Rodriguez analysis suggested a potential change in

dynamics for the Upper Burdekin catchment as well (Table 3), but

the time series was too short to make any firm inferences. The

Mann–Kendall test suggested a significant negative trend for the

baseflow signal (10% significance level, but no 5%). The inclusion

of forest cover extent in various multiple regression equations

(Table 4), after correcting for climate variability, showed that

deforestation may be one factor influencing hydrological shifts.

The fact that better results were obtained using lagged parameters

in the regressions suggests that the impact of deforestation at

these large scales may take some time to realise (cf. Rodriguez

et al., 2010). The equations linking streamflow (Q) and forest cover
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Table 3

Lags for maximum values of Spearman non-parametric correlations between signals

and forest cover extent in the Upper Burdekin. Maximum correlations were found for

a lag time of 2 years.

%FCE lag t = 0 lag t = 1 lag t = 2

VFLOWhigh 0.10 0.17 0.38

VFLOWint 0.26 0.49 0.57a

VFLOWlow 0.23 0.40 0.42

LFLOWlow 0.18 0.46 0.56a

SLOint 0.11 0.045 ÿ0.27

VFLOWx refers to volume flow and the subscript x corresponds to high (high),

intermediate (int) and low flows (low), LFLOWlow to log transformed values of low

flows and SLOint to the slope of the intermediate flows (see Section 3.4 for details).
a Correlations significant at 10% significance level.

Table 4

Summary of results, including r2, r2 if percentage forest cover extent (%FCE) is not

included (in brackets), and standard error of estimate (SEE) for linear regression

equations linking %FCE with climate attributes for the (1998–2009) period in the

Upper Burdekin.

Equation r2 SEE (ML)

VFLOWhigh ¼ ð10311:6�MAPIÞ ÿ ð7907:4�%FCEÞ 0.82

(0.79)

0.18 � 106

VFLOWmid ¼ ð120:4�MAPÞ þ ð1604:7�%FCEÞ ÿ 168896343 0.90

(0.73)

10,247

VFLOW low ¼ ð8:22�MAPÞ þ ð148:4�%FCEÞ ÿ 14067:8 0.933

(0.65)

589

VFLOWx refers to volume flow and the subscript x corresponds to high (high),

intermediate (int) and low flows (low), LFLOWlow to log transformed values of low

flows and SLOint to the slope of the intermediate flows. MAP and MAPI refer to mean

annual precipitation and mean annual precipitation intensity respectively (see

Section 3.4 for details).
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(Table 4) suggested increasing high flows and decreasing low flows

to be associated with increasing deforestation in the Upper Burde-

kin catchment. The inclusion of vegetation information in the

regression may be interpreted in terms of changes in soil water

use (higher for forest) but on the other hand the removal of forest

vegetation is related to changes in infiltration rates (typically

reduced due to soil compaction) (e.g. Ziegler et al., 2004). For

example, Zhou et al. (2010) reported that the effects of large-scale

forest recovery on Q in several gauging stations in Guandong Prov-

ince, China (179,752 km2) reduced variability by redistributing

water from the wet season to the dry season by promoting infiltra-

tion and recharge due to recovery of soil hydraulic characteristics.

Changes in soil water use, and their effect of decreasing low

flows, may be also related to vigorous vegetation regrowth and

pasture water use during the growing season. Rapid growth of sec-

ondary vegetation in seasonal Amazonia and northern Thailand has

been linked to high evaporation rates after 2–3 years (Hölscher et

al., 1997; Giambelluca et al., 2000). Vigorous regrowth is also a

feature of Acacia and Eucalypt dominated woodlands in the Upper

Burdekin area and elsewhere in Australia (Cornish and Vertessy,

2001; Roth et al., 2002; Fensham et al., 2005). In addition, the

active growing season of perennial pasture occurs between mid-

spring to the following mid-autumn (Hacker and Waite, 2001).

On the other hand, infiltration rates have been shown to decline

after conversion to grazing land as a result of hoof impact (e.g.

Daniel et al., 2002). Bonell and Williams (2009) concluded that

soils in this region have a delicate fabric that is easily disturbed,

leading to a reduction in infiltration capacity and increased occur-

rence and magnitude of overland flow. In similar soils in northern

Australia, high stocking rates resulted in soil compaction whereas

hillside runoff made up a large proportion of incident rainfall (Ive

et al., 1976). Burning after clearing is common and may also have

contributed to a further reduction in infiltration capacity (Valzano

et al., 1997; Mills and Fey, 2004).

6. Conclusion

The impact of broad-scale deforestation on hydrology was

investigated in two large catchments (>10,000 km2) in the Austra-

lian seasonal tropics. Several published methods were tested to

separate climate variability from land use and land cover change

(LUCC) effects. The Comet catchment (16,440 km2) had 45% of

the native woodland cleared during the mid-1960s. In the Upper

Burdekin (17,299 km2), clearing reduced native woodland extent

from 83% in 1989 to 58% in 2009.

In the Comet catchment, findings from a simple coupled water–

energy balance framework suggested that most of the observed

changes in annual streamflow were related to climate variability.

However, the period immediately after clearing showed an

increase in interannual streamflow that suggested a decrease in

interannual evapotranspiration associatedwith LUCC. An overall in-

crease in annual streamflow in the post-LUCC period (1971–2007)

was mainly attributed to higher than average rainfall linked to La

Niña conditions in the wet 1970s. Results from applying a Bud-

yko-type model to assess changes in evapotranspiration efficiency

for pre- (1920–1953) and a climatically similar post-LUCC (1979–

2007) showed a slight decrease in evapotranspiration of 3.1–3.8%

with negligible (i.e. 1%) increase in streamflow. Likely causes for

the small estimated effect may be measurement noise, spatio-

temporal terrain and climate factors other than rainfall and poten-

tial evapotranspiration which are not taken into account in Budyko

theory and expansion of farm dams and extraction of water for

irrigation. Although no differenceswere found in interannual yields,

changes pre- and post-LUCC in metrics derived from daily stream-

flowhighlighted changes in catchment dynamics. Clearing of Acacia

and Eucalyptwoodlands enhanced stormflowof allmagnitudes and

somewhat decreased slower flows. A similar outcome was inferred

from daily streamflowmetrics results in the Upper Burdekin, which

were linked to effects of transitional woodland clearing, although
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the short analysis period (1998–2009) made attribution difficult.

Changes in hydrological process dynamics like those observed in

the Comet and Burdekin catchments can be realised in any one loca-

tion in the seasonal tropics as a consequence of rapid LUCC and

more intense agricultural practices. In these environments with

seasonal streamflow, regime variability due to LUCCwill result from

a trade-off between changes in evapotranspiration and/or changes

in soil infiltration characteristics.
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3.1 Introduction 

The quality of climate forcing data, precipitation in particular, required as inputs in W3RA-LUM 

will determine to a great extent the robustness and consistency of predictions of the impacts of 

LUCC on dry season flows. The aim of this chapter is to evaluate meteorological forcing data 

required to implement W3RA-LUM globally for later use in the modelling experiments (see 

Chapter 6) designed to test the hypotheses outlined in Chapter 1. This is attempted through a 

literature review and a comparison of commonly used rainfall data against observations. This 

chapter is partly based on the review of climate forcing data conducted in Peña-Arancibia et al. 

(2011, Appendix B). The review focused on daily meteorological forcing data required to 

implement W3RA-LUM globally. Drawing from published literature, strengths and weaknesses 

of commonly used datasets and experiences in their use in global hydrological modelling are 

briefly discussed. A more in-depth evaluation based on the approach by Peña-Arancibia et al. 

(2013, Appendix C) was performed for precipitation data which, because of its importance in the 

hydrologic cycle and its variability in space and time, is arguably the most crucial input. Long-

term global or quasi-global precipitation datasets are quantitatively evaluated by comparing 

them to gauge-only precipitation analysis data. 

This chapter is divided in three sections. Section 3.2 reviews meteorological forcing datasets, 

with emphasis on the variables needed in W3RA-LUM and includes an evaluation of 

precipitation datasets deemed suitable for modelling purposes.  Section 3.3 provides a 

summary and recommendations for scenario modelling.

3.2 Meteorological forcing data 

  

The gridded meteorological forcing data required by W3RA-LUM consist of daily precipitation (P

in mm), incoming shortwave radiation (SWdown in Wm
-2

) and minimum and maximum 

temperatures (Tmin,max in ºC). Other important radiation and atmospheric humidity variables are 

derived using equations in the literature or derived from the aforementioned inputs (cf. Van Dijk, 

2010). 
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3.2.1 Precipitation 

In the tropics, precipitation provides most of the moisture input for hydrologic processes. In 

hydrological modelling, the accuracy of other fluxes and stores of the water balance is heavily 

dependent on the accuracy of precipitation inputs (Pan et al., 2010; Li and Ma, 2010). However, 

precipitation is highly variable both in space and time and its accurate measurement requires 

the use of dense gauge or radar networks. Gridded precipitation analysis based on these 

ground observations may not be representative in areas where these networks do not exist or 

are sparse, as in most of the tropics (Betts et al., 2006).  

Precipitation derived from satellite data or modelled through retrospective analysis (reanalysis) 

have provided global or quasi-global precipitation estimates with daily or finer temporal 

resolution independently of gauge or radar networks. In reanalyses, precipitation is modelled 

independently of gauge observations, by numerical weather forecasting models with fluxes 

constrained by a succession of satellite observations (from the 1970s onwards) and 

supplemented by radiosonde ascents, observations from aircraft, ocean-buoys and other 

surface platforms. Satellite-based precipitation is obtained from the physical relationships 

between infrared radiances from cloud tops with surface precipitation, or from the modulation 

from hydrometeors on upwelling radiation from earth in the microwave range, or using a 

combination of these two approaches (Todd et al., 2001). Quasi-global and continuous satellite 

derived precipitation gridded data are only available since 1998, after the launch of the TRMM 

satellite mission in 1997 (Huffman et al., 2007). On the other hand reanalysis data go several 

decades in time and therefore are a valuable source of information to understand precipitation 

variability (Bosilovich et al., 2008).   

Inter-annual and inter-decadal precipitation variability in the tropics has been widely reported in 

the scientific literature (Nicholson, 2000; Marengo, 2004; Gu et al., 2007; Fu et al., 2010). 

Furthermore, Chapter 2 highlighted the importance of climate variability on several tropical 

studies of the impacts of land use and land cover change (LUCC) on hydrology, where the role 

of LUCC and climate variability in hydrological changes was difficult to ascertain. Based on 

these important considerations, long-term precipitation data from five reanalyses routinely used 
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in hydrological modelling and one dataset based on reanalysis and other observational 

measurements are initially considered for scenario modelling purposes. Several published 

studies have found that both reanalysis and satellite datasets are complementary and a 

combination of both is likely to produce better precipitation estimates (e.g., Ebert et al., 2007; 

Peña-Arancibia et al., 2013).  Although satellite datasets will not be further considered for 

scenario modeling due to their short time-series, they are included in this review for 

completeness. 

Table 3-1 provides details of data sources including resolution, frequency, coverage, data 

period and publication reference for each reanalyses and satellite precipitation data. Two 

reanalyses are produced by the European Centre for Medium-Range weather forecast 

(ECMWF): (1) ERA-40, spanning from 1957 to 2002 (Uppala et al., 2005). (2) ERA-Interim, 

which uses a new forecasting model that has among other improvements new model physics, 

humidity analysis, better horizontal resolution and a new set of satellite observations (Dee et al., 

2011). (3) The National Center for Environmental Prediction-National Center for Atmospheric 

Research (NCEP-NCAR) reanalysis (Kalnay et al., 1996) and (4) the NCEP-Department of 

Energy (NCEP-DOE); both reanalyses use the medium-range forecast NCEP global spectral 

model (GSM). NCEP-DOE uses an updated version of the forecasting model and include fixes 

to “bugs” present in NCEP-NCAR (Kanamitsu et al., 2002). (5) The recently released Japanese 

25 year reanalysis JRA-25 (Onogi et al., 2007), produced by a collaboration between the Japan 

Meteorological Agency (JMA) and Central Research Institute of Electric Power Industry 

(CRIEPI). It incorporates new satellite and conventional data. (6) The 50-Year High-Resolution 

Global Dataset of Metereological Forcings for Land Surface Modelling developed by Sheffield et 

al. (2006) at Princeton University, referred here to as ‘Princeton’. Precipitation in Princeton is 

based on the NCEP-NCAR reanalysis and used corrections for known precipitation biases in 

NCEP-NCAR reanalysis and rain day statistics using monthly gauge interpolated precipitation 

data from the Climatic Research Unit (CRU) (New et al., 2000) and TRMM precipitation 

respectively. 

Two reanalyses which due to their relatively recent release (e.g., NCEP-CFSR, Saha et al., 

2010; MERRA, Rienecker et al., 2011) have not yet being comprehensibly evaluated are not 
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further considered. Four satellite-based precipitation products combining microwave and 

infrared observations with daily or better temporal resolutions are commonly used in 

hydrological applications. The tropical Rainfall Measurement Mission (TRMM) Multi-satellite 

Rainfall Analysis (TMPA; Huffman 2007) provides two daily products: (1) product version 

3B42RT in near real time, which combines calibrated passive microwave precipitation and 

geosynchronous infrared inputs , and (2) version TRMM 3B42V6 which also uses monthly 

gauge observations to scale precipitation estimates. (3) CPC morphing (CMORPH; Joyce et al., 

2004) which combines multiple time-interpolated microwave and infrared-based motion 

precipitation. (4) The Rainfall Estimation from Remotely Sensed Information using Artificial 

Neural Networks (PERSIANN; Sorooshian et al. 2000) which establishes the infrared to rain 

rate relationship using artificial neural networks with parameters updated using microwave data. 

Table 3-1 Main characteristics of global and quasi-global reanalyses precipitation gridded data. 

Dataset 
Grid 

resolution 
Frequency Coverage Period Reference 

      

Reanalysis      

     

ERA-40 1.125º 6 h Global 1957–2002 Uppala et al. (2005) 

ERA-Interim 0.7º 6 h Global 1979– Dee et al. (2011) 

NCEP-NCAR 2.5º 6 h Global 1948– Kalnay et al. (1997) 

NCEP-DOE 2.5º 6 h Global 1957– Kanamitsu et al. (2002) 

JRA-25 1.25º 6 h Global 1979–2004 Onogi et al. (2007) 

Princeton* 1° 1 day Global 1948–2008 Sheffield et al. (2006) 

      

Satellite      

     

TRMM-3B42RT 0.25º 3h 60ºS~60ºN 1998– Huffman et al. (2007) 

TRMM-3B42V6  0.25º 3h 60ºS~60ºN 2002– Huffman et al. (2007) 

CMORPH 0.08º~0.25º 0.5, 3h 60ºS~60ºN 2002– Joyce et al. (2004) 

PERSIANN 0.25º 3, 6h 50ºS~50ºN 2000– Sorooshian et al. (2000) 

* Not a reanalysis but a combination of reanalysis and ancillary data 
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 Several studies mainly in Europe, the U.S. and Australia, have been conducted to evaluate 

different precipitation products from satellite and reanalyses by comparing them to ground 

observations in areas with reliable gauge or radar coverage (e.g., Gottschalk et al., 2005; Ebert 

et al., 2007; Ruane and Roads, 2007; Tian et al., 2009; Sapiano and Arkin, 2009; Tian and 

Peters-Lidard, 2010; Vila et al., 2010). Other studies have assessed the quality of precipitation 

products through the predictive capability of state variables such as soil moisture or streamflow 

estimates from hydrological or land-surface models (Gottschalk et al., 2005; Pan et al., 2010; 

Stisen and Sandholt, 2010).  

Findings from most studies suggest a better agreement of satellite-based precipitation with 

observational data for warm seasons whereas reanalysis precipitation outperformed satellite-

based precipitation during cooler seasons (e.g., Ebert et al., 2007). It was also found that high 

magnitude precipitation events are better captured by satellite estimates, although magnitudes 

were generally overestimated (Gottschalk et al., 2005; Tian et al., 2009).   Ebert et al. (2007) 

found that over the Australian tropics satellite-based precipitation outperformed reanalysis for 

heavy precipitation and that the incorporation of surface rain gauge data, such as in TRMM 

3B42V6, helped to reduce total errors and improved intensities. A global map of measurement 

uncertainties in daily satellite-based precipitation estimates produced by Tian and Peters-Lidard 

(2010) showed that satellite-based estimates agreed reasonably well over areas with higher 

magnitude precipitation, over the tropics in particular (Figure 3.1). The performance at higher 

latitudes degraded considerably, especially above of 40° latitude. This was due to coverage by 

fewer sensors (e.g., lack of TRMM coverage), light precipitation events, snowfall, and in the 

case of land surfaces, snow and ice on the ground which produce a signal similar to 

precipitation. Tian et al. (2009) found that daily satellite-based precipitation estimates in 

continental US constantly missed about 20–80% of light precipitation (<10 mm d
-1

) and that this 

missed precipitation contributed up to 40% of the total errors. 

Daily reanalysis precipitation from ERA-40 was considered more accurate than both NCEP in 

the continental US, Australia, and Western Europe and generally outperformed satellite 

estimates during winter (Ebert et al., 2007; Ma et al., 2009; Pan et al., 2010). ERA-40 had some 

high positive biases in the tropics and a negative bias over the Amazon during the rainy season 
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(Betts et al., 2006; Bosilovich et al. 2008). Precipitation from the recent reanalysis JRA-25 

compared reasonably well in both the Northern Hemisphere continents and the tropics, but 

contained distinct variation according to the available satellite data, which improved estimates 

after 1990 (Bosilovich et al. 2008). The largest discrepancies in JRA-25 occurred in the Amazon 

with underestimation during the rainy season, and high frequency of rain day occurrence 

worldwide (Saito et al., 2011). These were successfully corrected in terms of the occurrence, 

frequency and amount of monthly precipitation, using a stochastic model (Saito et al., 2011). 

JRA-25 precipitation also outperformed ERA-40 and NCEP-DOE in East Asia (Sohn et al., 

2011). 

Figure 3.1 (a-d) Standard deviation from the ensemble mean, as percentage of the mean daily 
precipitation, averaged for the four seasons respectively. Blank areas are deemed unreliable 
(after Tian and Peters-Lidard, 2010). 
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From a reanalysis system  perspective, ERA-Interim is considered far superior than its 

predecessor ERA-40 in several aspects; including a reduced spin-up of the precipitation in mid-

latitudes, reduced drift and some improvement in the diurnal cycle of precipitation in the tropics 

(Betts et al., 2009). Excessive precipitation in the tropics observed in ERA-40 has been largely 

reduced in ERA-Interim, although it still remains higher than observations (Uppala et al., 2008). 

ERA-Interim improved the negative bias in the Amazon observed in ERA-40 (Betts et al., 2009). 

It also performed as well as satellite-based precipitation such as TRMM 3B42RT and CMORPH 

and the gauge-adjusted high resolution reanalysis data NARR in continental US (Pan et al., 

2010). 

Impacts of satellite derived and reanalyses precipitation on water balance at a basin and global 

scale have been researched in some detail (Fekete et al., 2004; Fernandes et al., 2010). 

Results from a global water balance simulation study showed that precipitation biases from six 

monthly precipitation datasets lead to errors in water balance of similar magnitude in humid 

areas (in terms of simulated runoff) and larger over arid and semi-arid areas (e.g., Fekete et al., 

2004).  Several studies have aimed to address reanalysis precipitation errors by correcting for 

biases (e.g., Berg et al., 2003; Betts et al., 2005; Terink et al., 2010) with resulting improved 

water balances. Bias-corrected precipitation from Princeton has been compared to NCEP-

NCAR and ERA-40 in large-scale hydrological modelling to simulate soil moisture in the Yellow 

River Basin, showing better inter and intra-annual patterns (Li and Ma, 2010). 

3.2.2 Evaluation of precipitation data  

Based on the previous findings, three reanalyses (ERA-Interim, JRA-25 and NCEP-DOE) and 

Princeton precipitation data were chosen for further evaluation. ERA-Interim and JRA-25 

showed improvements with respect to previous reanalyses and reduced notable biases, 

particularly in the tropics, whereas Princeton uses ancillary data to adjust monthly precipitation 

totals and daily statistics. Although the previous findings suggest that ERA-Interim and JRA-25 

may be more accurate than both NCEP reanalyses, the more recent NCEP-DOE was also 

considered for completeness. 
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Two high resolution gauge-only daily precipitation analyses available in Australia and East Asia 

were used as reference to evaluate reanalyses and Princeton precipitation. The Specialised 

Information for Land Owners (SILO) spatial precipitation analysis (Jeffrey et al,. 2001) provides 

0.05° grids of gauge-based spatially interpolated daily precipitation for Australia whereas 0.25° 

grids are provided in East Asia by the Asian Rainfall-Highly-Resolved Observational Data 

Integration Towards Evaluation of Water Resources (APHRODITE, Yatagai et al., in press). 

All data were averaged to 1° resolution as a compromise between the spatial resolutions of the 

different reanalyses. Only grid cells with more than 5% gauge coverage per 1° (or a density of 1 

gauge per 500 km
2
) are considered for use in evaluating daily and monthly time series for 

1979–2007, the period in which all data overlapped.

A threshold of 1 mm d
-1

 is used to discriminate between rain and no rain in order to eliminate 

very light intensity ‘drizzle’ that would not significantly contribute to daily precipitation but may 

have an impact on daily precipitation intensity. To account for differences in precipitation 

regime, the geographical domain is divided into southern Australia (SAu), mostly dominated by 

synoptic system precipitation during winter;  northern Australasia (NAu), mostly dominated by 

convective precipitation during summer;  and south and east Asia (SEA), mostly dominated by 

monsoon precipitation (see Figure 3.2 for location of the grid cells and geographical sub-

domains). Results are stratified by season to help in the interpretation of results. 

The evaluation is performed at a monthly temporal scale for overall agreement in terms of 

correlation and root mean square differences (RMSD) and also at a daily temporal scale for 

agreement of precipitation intensity.   Whilst it is important to evaluate monthly precipitation 

totals and temporal correlation, precipitation intensities are crucial for surface hydrologic 

processes, particularly infiltration and runoff. In general, low-intensity, large-area precipitation 

may tend to increase evaporation and infiltration compared to high-intensity, localised 

precipitation that may result in increased runoff production through infiltration excess (Sheffield 

et al., 2006). Agreement metrics are investigated for spatial patterns by using maps of the best 

performing product and box-plots aggregated per geographical sub-domain. Precipitation 

intensity agreement is evaluated using plots of frequency of exceedance aggregated over three 

geographical sub domains. 
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Figure 3.2 Best performing product for correlation and RMSD of monthly precipitation for 1979–
2007 in each grid cell. Correlation for (a) all months, (b) for June, July and August (JJA) and (c) 
December, January and February (DJF), RMSD for (d) all months, (e) JJA and (c) DJF. 
Rectangles in (a) define the geographical extent for southern Australia (SAu), north Australasia 
(NAu) and south and east Asia (SEA). 

Spatial results of both monthly correlation (Figure 3.2 a-c) and RMSD (Figure 3.2 d-f) show that 

Princeton outperforms the reanalyses in most locations for all months in the time-series, except 

for Nepal, parts of Japan and the Korean peninsula during December January and February 

(DJF) and parts of Australia during June July and August (JJA). Similar spatial patterns are 

observed for RMSD. Box-plots for all months show that correlation and RMSD for Princeton is 
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higher and has lower dispersion than the other reanalyses in all geographical sub-domains 

(Figure 3.3 a-b).  

Figure 3.3 Box plots showing agreement statistics of monthly precipitation aggregated over 
three geographical sub domains (a) correlation (b) root mean square (RMSD). Tops and 
bottoms of each box are the 25th and 75th percentiles and whiskers are the 5th and 95th 
percentiles respectively. 

Figure 3.4 shows the percentage frequency of exceedance for daily rainfall (>1 mm d
-1

) 

aggregated over the three geographical sub domains, the three panels on the left use a log-

scale Y axis to emphasise the mid and low intensity regimes whereas the three panels on the 

right limit the X axis scale to emphasise the very high intensity regimes. Princeton appears to 

underestimate low rainfall intensities (<2 mm d
-1

) and overestimate high intensities (>50 mm d
-1

) 

in SAu and NAu. Princeton agrees well with mid and low intensities and high intensities <50mm 

d
-1

 in SEA, but overestimates intensities >50 m d
-1

. NCEP-DOE generally overestimates 

intensities across all regimes, and agrees well with the very high intensities in SEA. ERA-Interim 

and JRA-25 overestimate lower and underestimate higher rainfall intensities (>50 mm d
-1

) 

respectively in all geographical domains. 
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Figure 3.4 Percentage frequency of exceedance for daily rainfall (>1mm) aggregated over three 
geographical sub domains. (a-b) south Australia (SAu), (c-d) north Australasia (NAu), (e-f) south 
and east Asia (SEA). 

The previous evaluation against precipitation analysis data based on interpolated rainfall 

gauges demonstrated that bias correction against monthly observations in Princeton 

precipitation resulted in better estimation in terms of correlation, RMSD and rainfall intensity 
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than the reanalyses. It is noted that Princeton precipitation uses interpolated gauge data to bias 

correct the NCEP-NCAR precipitation in which is based, thus it may not be fully independent of 

the analysis data used in the evaluation. The bias correction procedure brought daily low 

precipitation intensity events closer to observations than the reanalyses, although enhancing 

the very high precipitation intensity events (frequency of exceedance < 0.1%). For these very 

high precipitation intensities in all geographical domains no dataset appear superior to the 

others; with the exception of NCEP-DOE in SEA, all datasets showed higher or lower biases. 

Based on the previous findings, Princeton precipitation is considered for the hydrological 

modelling experiments conducted in Chapter 5 and 6.

3.2.3 Surface air temperature 

Global gridded daily temperature data are available from satellite observations, temperature 

gauge observations and reanalysis. There are no global satellite datasets for air temperature as 

used in many land-surface models including W3RA-LUM, which is temperature measured at 2 

m above the ground, or near surface air temperature (Ta). The derivation of Ta from satellite data 

is far from straightforward due to the large variation close to the surface layer. Nevertheless, 

data from several satellite sensors are used to produce Ta for different geographical regions 

with encouraging results (Prihodko et al., 1997; Prince et al., 1998; Lakshmi et al., 2001; 

Vancutsem et al., 2010). 

To date, there is only one daily gridded dataset of Ta anomalies derived from daily gauge 

observations from GHCN and produced by the Hadley Centre for Climate Prediction and 

Research (HadGHCND; Caesar et al., 2006). HadGHCND includes daily estimates of maximum 

and minimum temperatures for the period 1946–2000. The dataset was gridded onto a 

2.5º×3.75º grid to facilitate comparison with the Hadley Centre GCM. The gauge density from 

which the surfaces were derived was relatively high in the Northern Hemisphere, but low in the 

Southern Hemisphere (Figure 3.4).  
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al., 2008). ERA-40 was closer to HadCRUT3 data than the NCEP-NCAR reanalysis, in all but 

the earliest years, reflecting the fact that surface observations were included in the ERA 

reanalysis (Simmons et al., 2004). ERA-40 was also more accurate than both NCEP reanalyses 

when compared to a dense station network in China, although the three reanalyses had small 

negative biases related to altitude differences (Ma et al., 2008). 

Figure 3.5 Time-series of 12-monthly running means for Ta anomalies averaged over global 
land areas from JRA-25, ERA-40, NCE-NCAR and CRU data (after Onogi et al., 2007). 

Princeton also includes Ta estimates, in which NCEP-NCAR Ta was adjusted to match an earlier 

version of HadCRUT3 monthly and daily averages in order to correct for known temperature 

biases (Sheffield et al., 2006). 

Although monthly estimates are useful for comparison purposes, they can hide stronger biases. 

At a finer temporal scale Pitman and Perkins (2009) compared daily maximum and minimum Ta

probability density functions from ERA-40, JRA-25 and NCEP-DOE to regional observational 

data in the absence of global observational datasets. Regional data included the Mississippi, 

Amazon, Murray-Darling and Mackenzie Basins and the Baltic and African regions. Estimates of 

maximum Ta probability density functions were dissimilar in the three reanalysis with apparent 

large regional differences but overall no reanalysis appeared more accurate than the other two. 

All reanalysis failed to match observations of maximum Ta probability density functions in the 
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Amazon. For minimum Ta, all reanalysis showed reasonable agreement north of ~45º N, 

whereas ERA-40 appeared less accurate compared to the other reanalysis and to observations. 

3.2.4 Surface radiation 

There are several ground measurement networks for surface radiation measurements (e.g.,

Ohmura et al., 1998; Gilgen and Ohmura, 1999), including incoming shortwave radiation 

(SWdown) and longwave radiation (LWdown), but not yet a global gridded product (Liang et al., 

2010). Of these, the Global Energy Balance Archive (GEBA) (Gilgen and Omura, 1999) has 

~2,000 stations worldwide with 250,000 monthly records of various surface energy balance 

estimates (mostly SWdown) since the 1950s (Lian et al., 2010). Work is in progress to produce 

interpolated continental datasets of incoming shortwave radiation derived from GEBA 

(Chiacchio et al., 2010).   

Global gridded radiation datasets are more commonly derived from satellite sensors and 

reanalysis. The first global gridded dataset derived from satellite data was the World Climate 

Research Program-Surface Radiation Climatology Project (WCRP-SRB) (Whitlock et al., 1995). 

It used broadband radiometer data from the Earth Radiation Budget (ERB) and the Earth 

Radiation Budget Experiment (ERBE). The latest version (R2) of the data has a spatial 

resolution of 1º×1º and 3-hourly to monthly temporal resolution for 1984–1993 and provides 

shortwave and longwave radiation flux data (Stackhouse et al, 2000).  The R2 SWdown showed a 

monthly average RMSE ~25 Wm
-2

 globally.  Region by region, bias differences in R2 showed a 

systematic decrease and are usually much less than 5% of the observed shortwave, except for 

biases in Central and South American sites which are ~8% (Stackhouse et al, 2000). Monthly 

biases and RMSE for LWdown and SWdown were comparable.   

The International Satellite Cloud Climatology Project (ISCCP) produced a global radiative flux 

dataset (ISCCP-FD) on a 3-hourly, 280 km ×280 km resolution for 1983–2006.  It used primarily 

observations from the Television and infrared Observations operational Vertical Sounder 

(TOVS) and other satellites to retrieve global cloud properties at diurnal, seasonal, and 

interannual scale. These properties were used to calculate radiative fluxes using the Goddard 

Institute for Space Studies (GISS) radiative transfer model (Zhang et al., 2004). Comparison of 
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SWdown with the Baseline Surface Radiation Network (BSRN) data (Ohmura et al., 1998) 

revealed a mean difference of 2 Wm
-2

 and an RMSE error of 19 Wm
-2

 (Zhang et al., 2004).  

Evaluation was also performed against GEBA stations for 2656 SWdown and 62 LWdown samples. 

Mean RMSE difference is 8.8 Wm
-2 

for SWdown and -14.9 Wm
-2 

for LWdown.   

More recently, the GEWEX Surface Radiation Budget (GEWEX-SRB) Project has completed a 

24.5-year (July 1983 to December 2007) dataset of surface SWdown and LWdown radiative fluxes 

derived mainly from Geostationary Operational Environmental Satellite (GOES) data 

(Stackhouse et al, 2011). GEWEX SRB release 3.0 is produced on a 1º×1 º global grid and 3-

hourly resolution using satellite-derived cloud parameters and ozone fields, reanalysis 

meteorology, and a few other ancillary datasets. Validation of monthly average downward 

SWdown and LWdown fluxes with BSRN sites mean bias for SWdown fluxes is ~-4 Wm
-2

 with an 

RMSE difference of 23 Wm
-2

. An examination of individual sites showed that most of this 

underestimation arose at polar sites; especially those located on the Antarctic coast, but these 

were much improved over previous versions (Stackhouse et al, 2011). Corresponding bias for 

the LWdown fluxes were only about -0.1 Wm
-2

 with an RMSE difference of 11 Wm
-2

. 

Another satellite derived radiation dataset is the daily 1º×1 º global grid derived from the Cloud’s 

and the Earth’s Radiant Energy System Radiative Fluxes and Clouds instrument (CERES-FSW) 

onboard TRMM and subsequently on Terra and Aqua satellites (Wielicki et al., 1996; Young et 

al., 1998).  Gupta et al. (2004) evaluated instantaneous-footprint of SWdown and LWdown fluxes 

derived from CERES/TRMM from January-August 1998 against high quality ground-based 

radiometric measurements from several sites of the BSRN dataset. For this instantaneous–

footprint SWdown fluxes had significant biases in some sites, and random errors were much 

larger than acceptable values. The success criteria for these surface flux retrievals should be 

±20 Wm
-2

 on an instantaneous-footprint basis to be truly useful in climate research studies 

(Suttles and Ohring, 1986). Further evaluation of the CERES Terra and Aqua products retrieved 

with two different models showed that SWdown values in clear-sky fluxes satisfied the established 

accuracy requirements for the global case, although with considerable scatter and biases. 

Significant underestimation happened in one of the models in polar and desert regions and 

overestimation in island situations.  The second model improved estimates in polar and desert 
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regions but overestimation persisted over islands. LWdown provided very-good clear sky results 

in both models, whereas good cloudy-sky results occurred in only one model. Significant 

underestimation also occurred in areas with low vapour content. 

Gui et al. (2010) compared 3-hourly or hourly (when available) SWdown measurements for 2000–

2002 from ISCCP-FD, GEWEX-SRB and CERES-FSW SWdown against 36 stations from five 

different ground measurement networks. Results showed that SRB met accuracy criteria in 

most regions, followed by FD and FSW. Both SRB and FD underestimated SWdown in the 

Tibetan Plateau and Greenland and had large biases and overestimation in Southeast Asia. In 

addition, FD had slight overestimation in the Amazon. FSW had low correlations, had large 

biases and overestimates ground measurements in the Tibetan Plateau and Southeast Asia, as 

well as large overestimation in North America and the Amazon (Figure 3.6). Large biases in 

South America and Africa may be attributed to biomass burning in dry seasons, likely due to 

poor representation of aerosol loads in satellite algorithms (Pinker et al., 2000). 

Existing literature shows that SWdown and LWdown derived from satellite data have generally 

smaller biases than reanalysis because they are more constrained by observations (Hicke, 

2005; Betts et al., 2006).  Climatologies of SWdown and LWdown in ERA-40 and NCEP-DOE 

reanalysis were compared globally against ISCCP-SRB data (Betts et al., 2006). The biases in 

the climatology of the reanalyses are significant, more for NCEP-DOE than ERA40. Over the 

northern continents in summer, NCEP-DOE has too little cloud cover, so that SWdown is too 

large. The corresponding ERA40 biases are mixed and generally smaller. 
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Figure 3.6 Comparison of three-year mean SWdown between satellite estimates and ground 
measurements at 36 sites in seven regions, averaged from three hourly values over 2000–2002 
(after Gui et al.; 2010). 

Using global GEBA data, Hicke (2005) compared mean average daily SWdown from NCEP-

NCAR and ISCCP-FD over each month for the period 1984–2000. ISCCP-FD estimates had 

substantially reduced errors relative to ground-based observations compared to NCEP-NCAR. 

Mean global NCEP-NCAR computed growing season solar radiation exceeded that from 

ISCCP-FD by 16%, likely as a result of lower cloudiness within the NCEP reanalyses compared 

to satellite observations. 

Xia et al. (2006) showed that NCEP-NCAR annual averages for 1984–2000 SWdown exceeded 

surface stations in China from 40 Wm
-2

 to more than 100 Wm
-2

. Different trends were also 

observed in surface observations and NCEP data. The same study found that ISCCP-FD 

SWdown agreed well in northern China (north of 35ºN) with less than 10 Wm
-2 

bias. Bias 

increased south of 35ºN to 17–29 Wm
-2

.  

Monthly and annual SWdown ERA-40 and ERA-Interim data were evaluated against observations 

in three large river basins, the Amazon, Mississippi and Mackenzie (Betts et al., 2009). In the 

Amazon, seasonal patterns in both ERA reanalysis matched ISCCP-FD data. Clear-sky SWdown

in ERA-Interim has decreased by 16 Wm
-2

with respect to ERA 40, closer to the ISCCP-FD 

observations than ERA-40. However both reanalysis seasonal estimates underestimated 

ISCCP-FD for all-sky conditions, with substantially lower estimates in ERA-Interim than ERA-40, 

probably because of the differences in the aerosol climatology between ERA-40 and ERA-

Interim. This underestimation is observed as well in the Mississippi, although not as much as in 
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the Amazon. In summer the ERA-Interim clear-sky fluxes are very close to the ISCCP clear-sky 

flux. The surface all-sky SWdown estimate from the ISCCP dataset is less than the reanalyses for 

most of the year. Similar results to the Mississippi were obtained for the Mackenzie.  

In the Princeton dataset SWdown adjusts the systematic biases in NCEP-NCAR data using the 

GEWEX-SRB climatology and a historic cloud dataset (Troy and Wood, 2009). The dataset has 

been extended through 2008 and updated using the GEWEX-SRB v3.0 product. For 1984–

2006, monthly downward shortwave was scaled directly to SRB, without using the cloud dataset 

to adjust for trends. The dataset was evaluated by Troy and Wood (2009) together with ERA-40 

reanalysis, NCEP-NCAR, and satellite ISCCP-SRB, against ground station data in Northern 

Eurasia sourced from the World Radiation Data Centre (WRDC), a subset of GEBA. Mean daily 

SWdown annual biases were within approximately ±3 Wm
−2 for all the gridded datasets except 

the NCEP-NCAR reanalysis. Seasonal differences were as large as 20 Wm−2. ERA-40 

consistently estimated lower SWdown; this was attributed to differences in cloud cover between 

ERA-40 and ISCCP-SRB and PGF, which use ISCCP cloud cover. The ISCCP-SRB dataset 

had the smallest bias and RMSE compared to the station observations. 

3.3 Summary and recommendations 

A literature review was conducted to assess the quality and accuracy of climate forcing data 

required as inputs in W3RA-LUM, including: daily precipitation (P), incoming shortwave radiation 

(SWdown) and temperature in terms of near surface air temperature (Ta). A more in-depth 

evaluation was performed for precipitation data because of its importance in the hydrologic 

cycle and its variability in space and time. The recommendations presented here for variables 

other than precipitation are based on the literature review findings. 

In terms of precipitation, review findings showed that satellite-based precipitation performed 

better during warm seasons and in the tropics, although overestimating total precipitation. 

Reanalysis data outperformed satellite-based precipitation during winter and in higher latitudes.  

Scaling precipitation using gauge data, as in TRMM V6, reduced observed bias in many areas 
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globally. To address inter-annual and inter-decadal precipitation variability, only reanalysis data 

with long-term time-series were considered for scenario modelling. 

Long-term time-series of NCEP-DOE, ERA-Interim and JRA-25 reanalyses and Princeton 

precipitation were systematically evaluated against gauge-based precipitation analysis in 

Australia and south and east Asia. Princeton agreed better than the reanalysis for monthly 

correlation and root mean square error and daily precipitation intensity frequency and therefore 

was considered more suitable for the hydrological modelling experiments conducted here. 

Global monthly, annual and climatological surface temperature anomalies from reanalysis had 

very similar values. At the daily scale, compared daily maximum and minimum temperature 

probability density functions from ERA-40, JRA-25 and NCEP-DOE were dissimilar with large 

regional differences, but overall no reanalysis showed more skill than the aforementioned two 

when compared against regional observational temperature data. Princeton used ground-based 

data to correct known temperature biases in NCEP-NCAR. 

Surface shortwave radiation derived from satellite data generally has smaller biases than 

reanalysis because they are more constrained by observations. Of the three satellite-based 

incoming shortwave radiation estimates, GEWEX-SRB appeared superior to the other two.  

Globally, the biases in the climatology of the re-analyses are considerable. Princeton adjusted 

the systematic biases in NCEP-NCAR shortwave radiation data using the GEWEX-SRB 

climatology and a historic cloud data set. 

Climate inputs other than precipitation, at least at daily scale, have less spatial variability. Given 

the bias correction used for these variables in Princeton using ancillary data that appeared of 

reasonable quality, these are also considered for the hydrological modelling experiments 

conducted here. 
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Abstract. The understanding of low flows in rivers is

paramount more than ever as demand for water increases on a

global scale. At the same time, limited streamflow data to in-

vestigate this phenomenon, particularly in the tropics, makes

the provision of accurate estimations in ungauged areas an

ongoing research need. This paper analysed the potential of

climatic and terrain attributes of 167 tropical and sub-tropical

unregulated catchments to predict baseflow recession rates.

Daily streamflow data (m3 s−1) from the Global River Dis-

charge Center (GRDC) and a linear reservoir model were

used to obtain baseflow recession coefficients (kbf) for these

catchments. Climatic attributes included annual and seasonal

indicators of rainfall and potential evapotranspiration. Ter-

rain attributes included indicators of catchment shape, mor-

phology, land cover, soils and geology. Stepwise regression

was used to identify the best predictors for baseflow reces-

sion coefficients. Mean annual rainfall (MAR) and aridity

index (AI) were found to explain 49% of the spatial varia-

tion of kbf. The rest of climatic indices and the terrain in-

dices average catchment slope (SLO) and tree cover were

also good predictors, but co-correlated with MAR. Catch-

ment elongation (CE), a measure of catchment shape, was

also found to be statistically significant, although weakly cor-

related. An analysis of clusters of catchments of smaller size,

showed that in these areas, presumably with some similarity

of soils and geology due to proximity, residuals of the re-

gression could be explained by SLO and CE. The approach

used provides a potential alternative for kbf parameterisation

in ungauged catchments.

Correspondence to:
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1 Introduction

The gradual depletion of water stored in a catchment dur-

ing dry weather constitutes the drainage or baseflow reces-

sion (Tallaksen, 1995). The understanding of quantities and

temporal patterns of baseflow are central to water resources

management, particularly in catchments with marked stream-

flow seasonality (Vogel and Kroll, 1992; Bruijnzeel, 2004;

Brandes et al., 2005).

In recent years, several assessments of global water re-

sources have been conducted using hydrological models and

land surface models (LSMs); mainly in response to in-

crease in water demand and potential impacts of climatic

and land use change (Vörösmarty et al., 2000; Oki and

Kanae, 2006). Linear conceptual storage-discharge models

have been used to simulate baseflow recession in many of

these models. In many cases, the linear reservoir applica-

tion in global hydrological models used fixed parameter val-

ues, e.g. the routing HD model (Hagemann and Dümenil,

1998), macro-PDM (Arnell, 1999, 2003) and WGHM (Döll

et al., 2003). Values obtained from drainage theory have

been used in PCR-GLOBWB (Van Beek and Bierkens, 2008)

whereas calibrated values were used in the global application

of WASMOD-M (Widen-Nilsson et al., 2007) and in an ap-

plication of the Catchment Land Surface Model (CLSM) to

the Somme River Basin (Gascoin et al., 2009). The use of

drainage theory is questionable at large scales and hindered

by the uncertain quality of data needed to estimate various

parameters. For example, the theoretical approach of Brut-

saert and Nieber (1977), one of the few analytical ways to

obtain aquifer parameters from hillslope to catchment scales,

was used by Zecharias and Brutsaert (1988) to advance a

proportionality relationship between the recession coefficient

and aquifer characteristics:

Published by Copernicus Publications on behalf of the European Geosciences Union.
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kbf∝
KDα

YL
(1)

where K is hydraulic conductivity, D is aquifer thickness ,

α is slope, Y is storativity and L a characteristic flow path

length. Many of the aquifer parameters are not readily avail-

able in the tropics (and elsewhere); in particular data on

aquifer hydraulic conductivity and thickness are sparse and

scattered and cannot be considered representative of large ar-

eas. Also, the density of streamflow station data – used on

a routine basis to calibrate conceptual models – is not spa-

tially uniform, particularly in remote forested areas. More-

over, calibration approaches are not practical for global ap-

plications because of the large number of locations for which

separate calibrations would be needed (Nijssen et al., 2001).

Nijssen et al. (2001) modelled the seasonal discharge of 26

large basins in the world (including the Amazon, Congo and

Mekong) using data from the Global River Discharge Cen-

ter (GRDC) based in Koblenz-Germany. From these data,

they estimated baseflow recession coefficients (kbf) to param-

eterise the conceptual quasi-linear baseflow reservoir com-

ponent of the VIC model (Liang et al., 1994). Baseflow

recession coefficients were determined for 347 stations that

had good quality data using a linear regression on the log-

transformed discharges and then interpolated to the nearest

areas.

On the other hand, several studies have correlated ter-

rain attributes – including catchment morphology and soil

type – to estimate kbf in different climatic and physiographic

regions or for geological formations across the world (e.g.

Post and Jakeman, 1996; Yu et al., 2002; Brandes et al.,

2005). Most studies have focused on catchments with ar-

eas<200 km2 and located in common physiographic regions

of similar climate. Van Dijk (2010) included climatic at-

tributes in addition to terrain attributes to analyse the rela-

tionship with kbf for 183 mainly temperate Australian catch-

ments with a large geographical spread and encompassing

different climates. The results showed that baseflow reces-

sion from a linear reservoir was best explained by climatic

attributes, with catchment aridity index (AI, the ratio of rain-

fall to potential evapotranspiration) explaining 27% of the

variation in derived recession coefficients. No correlations

were found with catchment morphology or geology; how-

ever, spatial coherence of the residual unexplained variation

showed that another 53% of the variation was spatially corre-

lated over distances of 100–150 km. This was probably asso-

ciated with terrain factors not captured by the available data

and the large geographical spread of individual catchments

(Van Dijk, 2010).

Motivated by the latter results, the objective of the present

study is to identify the dominant climatic and terrain at-

tributes that control the variance of kbf in tropical and sub-

tropical catchments. There is a dearth of studies that have

investigated these relationships in the tropics and most of

them were limited to small geographic regions (e.g. Yu et

al., 2002; Mwakalila et al., 2002). In this study, catch-

ment baseflow recession coefficients were determined from

GRDC daily streamflow data (m3 s−1) using a linear reser-

voir model. Although research indicates that low flows dur-

ing dry periods can be adequately approximated by linear

reservoirs (Zecharias and Brutsaert, 1988; Vogel and Kroll,

1992; Chapman, 1999; Fenicia et al., 2006, Van Dijk, 2010),

this may not be the case in every catchment, in which some

hydrological processes may lead to a non-linear behaviour.

The choice of a linear model was made by taking into ac-

count that the aforementioned global hydrological models

use a linear reservoir to estimate baseflow. Building equa-

tions based on the climatic and terrain indices that best ex-

plain kbf in gauged catchments to estimate this parameter in

ungauged catchments is a subsidiary objective of this study.

These equations can be potentially used to parameterise kbf
in global hydrological models.

2 Theory

Several reviews on baseflows and recession analysis can be

found in the existing literature (Tallaksen, 1995; Wittenberg,

1999; Smakhtin, 2001). In this paper, only a summary of

the rationale and the main equations involved in baseflow re-

cession analysis are presented. The theoretical framework of

this study follows the one presented in Van Dijk (2010).

A linear reservoir model requires a recession coefficient

(kbf) to separate daily streamflow data into baseflow and

quickflow and is expressed as:

Qbf=−kbfS (2)

whereQbf (in mm day−1) is the flow rate during the baseflow

recession period, S (mm) is reservoir storage. The constant

kbf is expressed in day
−1.

Streamflow data representative of baseflow needs not to

be affected by stormflow. It is assumed that stormflow af-

fects streamflow for a period of TQF days after the event

peak flow (Van Dijk, 2010). Van Dijk (2010) found that for

catchments in Australia, the number of data pairs decreased

exponentially with increasing TQF period. Vogel and Kroll

(1992) considered baseflow recession to start when the 3-day

streamflow moving average begins to decrease, and the re-

cession to end when the 3-day moving average start to in-

crease. A period of 5 days (TQF5) was considered a useful

compromise between representative low flow conditions and

data availability. Increasing the window size to more days

would have resulted in many catchments being dropped from

the analysis. In addition, by using a large TQF, results may

be biased because only a small number of long baseflow re-

cessions would be used to determine kbf (Van Dijk, 2010).

On the other hand, 5 days was assumed a sufficient time to

avoid influence of storm flow on the hydrograph recession.

This criterium was considered to construct Q and Q∗ (Q of

the previous day) data pairs representative of baseflow condi-

tions for each gauging station. All days with zero streamflow

Hydrol. Earth Syst. Sci., 14, 2193–2205, 2010 www.hydrol-earth-syst-sci.net/14/2193/2010/



J. L. Peña-Arancibia: The role of climatic and terrain attributes in estimating baseflow 2195

Fig. 1. Methodology flowchart. Unregulated catchments without substantial land use and land cover change (LUCC) and with snow,

irrigation or urban extent <5% are selected for the analysis. Streamflow had to have at least 5 years of data , 30 runoff events and 30 Q–Q∗

data pairs.

and or missing data were also excluded. By using a represen-

tative number of Q–Q∗ data pairs it was possible to estimate

the recession coefficient kbf. The procedure to obtain kbf and

the influence of using different windows sizes on kbf will be

described further on.

The relationship between initial storage (S0 in mm) and S

after t days is defined by:

S= S0e
−kbft (3)

By combining Eqs. (2) and (3) for time step t = 1, provided

that both Q and Q∗ represent baseflow and Q0=Q∗, base-

flow recession can be represented by the exponential decay

function:

Q=Qe−kbft (4)

3 Methodology

Time-series of catchment streamflow hydrographs for 1175

tropical and sub-tropical stations with >5 years of data

were obtained from the Global Runoff Database (GRDB)

from the GRDC. Additional data for 272 stations in trop-

ical and subtropical Queensland (Australia) were obtained

from the Department of Environment and Resource Man-

agement Queensland (DERM). Stations with more than 30

runoff events (defined as the number of times that daily av-

erage streamflow is exceeded) and more than 30 data pairs

Q–Q∗ characteristic of low flow conditions were selected for

the analysis. Data in m3 s−1 were subsequently converted

to mm d−1. Furthermore, stations were geo-referenced us-

ing the Hydrosheds river network data (Lehner et al., 2008).

Catchments not affected by regulation were identified using

a pan-tropical dam dataset (Saenz and Mulligan, 2010) rep-

resenting the only available dataset (to the authors’ knowl-

edge) providing the actual catchment areas of reservoirs on a

pan-tropical scale. In addition, GLOBCOVER land use data

(Arino et al., 2008) and the MODIS 500-m map of global

urban extent (Schneider et al., 2009) were used to check for

catchments that may have snowmelt influence and irrigation

areas, and large urban centres respectively. Only catchments

with less than 5% snow cover, irrigation or uban extent were

used in the analysis. Areas not affected by extensive defor-

estation during the period of analysis, which would likely

have an impact on the recession coefficient trend, were deter-

mined from the map of areas of rapid land cover change pro-

vided by Lepers et al. (2005). Catchments complying with

these criteria were considered unregulated for the purpose of

this study.

Relevant catchment climatic, physiographic and geolog-

ical attributes previously used in baseflow recession analy-

sis were derived using terrain analysis and available climatic,

geological or soils data. A preliminary analysis of frequency

distributions for kbf and various climatic indices and catch-

ment attributes was conducted to assess applicable correla-

tions methods. Furthermore, a non-parametric correlation

matrix was used to determine the degree of correlation be-

tween recession constants and catchment attributes. Finally,

predictive relationships were obtained using stepwise regres-

sion. Figure 1 presents a summary flowchart of the procedure

described above.

3.1 Climatic and terrain attributes of pan-tropical

catchments

Several climatic and terrain attributes with a demonstrated

correlation with baseflow parameters (e.g. Post and Jakeman,

1996; Brandes et al., 2005; Van Dijk, 2010) were derived for

each catchment. A summary of parameters, their original

resolution and source are summarised in Table 1. Climatic

attributes included annual and seasonal descriptors of rainfall

and potential evapotranspiration and were defined as follows:

– Mean annual rainfall (MAR) expressed in mm y−1 ob-

tained from the WORLDCLIM dataset (Hijmans et al.,

2005).

– Potential evapotranspiration (PET) in mm y−1 esti-

mated using the Hargreaves et al. (1985) model for-

mulation and parameterised as described in Trabucco et

al. (2008).
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Table 1. Summary of climatic and terrain attributes used in the present study.

Parameter Resolution Source

Temporal Spatial

MAR

(mmy−1)

Monthly

average

climatology

1950–2000

1× 1 km grid WORLDCLIM (Hijmans et al., 2005)

PET (mmy−1) Monthly

average

climatology

1950–2000

1× 1 km grid Trabucco et al. (2008; available at: http://www.

csi.cgiar.org)

AI NA 1× 1 km grid Calculated from MAE and PET

TMI NA 1× 1 km grid Calculated from monthly rainfall and monthly

PET

SI NA 1× 1 km grid Calculated from monthly rainfall

CE (m2m−1) NA NA Hydrosheds 1 km DEM (Lehner et al., 2010)

SLO (%) NA 90× 90m grid Hydrosheds 90m DEM (Lehner et al., 2010)

DD (kmkm−2) NA 90× 90m grid Hydrosheds 90m river network available at

http://hydrosheds.cr.usgs.gov/hydro.php

TC (%) NA 1× 1 km grid AVHRR Tree Cover Continuous fields (DeFries

et al., 2000; available at: http://glcf.umd.edu/

data/treecover/data.shtml)

SDI NA 9× 9 km grid ISRIC-WISE derived soil properties

(Batjes, 2006)

DPI NA NA WHYMAP (2010)

– Aridity index (AI =MAR/PET)

– Thornthwaite Moisture Index (TMI, Thornthwaite,

1948). An overall measure of precipitation effectiveness

on a monthly basis. It is estimated using monthly rain-

fall and PET totals from the above mentioned datasets

as follows:

TMI=

12
∑

m=1

(100sm−60dm)

PET
(5)

where s is the monthly water surplus and d is the monthly

water deficit (mmmo−1).

– Seasonality index. The seasonality index (SI, Walsh and

Lawler, 1981) is defined as the sum of the absolute de-

viation of mean monthly rainfall (X̄m) from the over-

all monthly mean divided by the mean annual rainfall

(MAR):

SI=
1

MAR

12
∑

m=1

∣

∣

∣

∣

Xm−
MAR

12

∣

∣

∣

∣

(6)

The SI varies from zero (when all months have the

same rainfall) to 1.83 (when all rainfall occurs in a sin-

gle month): values <0.19 indicate a very equable rainfall

regime, whereas values between 0.20 and 0.99 indicate a sea-

sonal rainfall regime and values >1 a short wet season.

Terrain attributes included indicators of catchment shape,

morphology, land cover, soils and geology.

– Catchment shape, defined by catchment elongation

(CE) in km2 surface area per km of catchment length,

or by the ratio of a circle with the same area as the

catchment to the catchment’s length (Post and Jakeman,

1996).

– Mean catchment rainfall weighted slope (SLO) (%). To

account for spatial variability in rainfall, each catchment

slope pixel is scaled using normalised mean catchment

rainfall data. By scaling SLO in this way, areas that

may produce more runoff due to spatial differences in

rainfall have more weight in the final mean catchment

slope computation.
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– Catchment drainage density (DD) in km per km2, de-

fined by the total length of streams per square kilometre

of catchment area.

– Catchment tree cover percentage (TC), from AVHRR

Tree Cover Continuous fields (DeFries et al., 2000).

– Soil unit weighted infiltrability class (SDI), obtained

from the ISRIC-WISE Soil Derived Properties database

(Batjes, 2006). The final values were obtained using

an area weighted average of dominant soils comprising

each soil unit.

Categorical information on drainage potential index (DPI)

according to geology and climate was obtained from

WHYMAP (2010). WHYMAP included eleven classes:

Class I to V correspond to the presence of a major ground-

water basin with very high, high, medium, low and very

low drainage rates respectively. Classes VI to IX correspond

to complex hydrogeological structure and very high, high,

medium and low drainage rates respectively. Class X and XI

correspond to local and shallow aquifers with high and low

drainage rates respectively.

3.2 Estimation of recession coefficient kbf

Methods to obtain kbf from baseflow data pairs include lin-

ear regression through the origin, linear regression on log-

transformed baseflow data pairs and optimisation techniques

(e.g. Wittenberg, 1999; Tularam and Ilahee, 2008). For

this study, recession coefficients were estimated by fitting

Eq. (4) to the baseflow data pairs using the mean relative er-

ror (εMRE) as the objective function and a multi-start down-

hill simplex search method (Van Dijk, 2010):

εMRE=
1

n

∑

∣

∣

∣

∣

Q

Qest
−1

∣

∣

∣

∣

(7)

where Qest is Q predicted from Eq. (4). By using the relative

agreement between estimated and observed streamflows, this

formulation does not use absolute values which could bias

the results and gives equal weighting to all data pairs. How-

ever weighting influence by very low or very large values

when using different objective functions cannot be entirely

avoided. In addition, by estimating a mean baseflow reces-

sion constant from many observed recession segments, the

problem of time variability (per event or seasonal) in base-

flow recession is partially overcome (Tallaksen, 1995).

3.3 Statistical analysis

A correlation matrix was used to determine the correlation

between various catchment attributes and the recession co-

efficients. The attributes with the best individual explana-

tory values were combined into a stepwise multiple regres-

sion equation. Exponential, logarithmic and power functions

were computed to link potential predictors to kbf, and the

best regression was selected to subsequently predict kbf. At-

tributes that co-correlated were not considered in the subse-

quent stepwise regression. After selecting the best equation,

the same types of regression were computed for both the ab-

solute and relative residual variance and the remaining po-

tential predictors, until no further variation was explained by

adding these.

4 Results

4.1 Assembling a pan-tropical dataset for baseflow

modelling

Catchment boundaries were obtained from the Hydrosheds

1 km river network (Lehner et al., 2010). Only catchments

with a relative error of less than 10% between the GRDC re-

ported surface areas and the river network derived areas were

considered in the analysis. After controlling for regulation,

snow and lake influence, urban and irrigation areas, and land

use change; the analysis resulted in a database comprising

167 catchments worldwide (Fig. 2a). Of the 167 catchments,

50% had a catchment area <1000 km2 and 90% <6000 km2.

The median was 850 km2.

The catchment assemblage encompassed many tropical

climates (Fig. 2b). A large number of stream gauging sta-

tions were located in Australia. No stations complying with

the aforementioned requirements were found in the Amazon

or Congo Basins. Most stations in these basins had monthly

records or short daily records, which excluded them from the

present analysis of daily flows.

4.2 Estimation of recession coefficient kbf

The overall mean kbf for the 167 analysed catchments was

of 0.08±0.053 (std. dev.) day−1. The distribution was posi-

tively skewed. Higher values were found in arid catchments

and lower values in wetter catchments. In addition, lower

values were generally found in catchment closer to the coast-

line. The mean relative error (εMRE) was 0.97±0.38m
3 s−1.

The distribution of εMRE for different mean daily baseflow

ranges is shown in Fig. 3.

In Australia, the lowest values of kbf (0.02–0.08 day
−1)

were generally found in catchments that lie closer to the

east and north coastlines. Catchments located in the more

arid interior had values of 0.11–0.18 day−1. In Southeast

Asia, the fully humid Malayan Peninsula had values of

0.02–0.06 day−1. Continental Southeast Asia showed val-

ues of 0.04–0.07 day−1. The highest values in Africa were

found in Namibia (0.20 day−1) and in the catchments lo-

cated in the northernmost of the Sahel (0.17 day−1). Catch-

ments located closer to the coastline in West Africa and

Central Africa (Congo and Zambia) generally showed val-

ues of ∼0.035 day−1, as did temperate catchments in South

Africa. Catchments located in the Andes had values of 0.03–

0.08 day−1. Catchments in Panama, Costa Rica Nicaragua
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(a) (b)

Fig. 2. Distribution of catchments in the dataset: (a) Geographic distribution (b) In terms of climate using the seasonality index (SI; Walsh

and Lowler, 1981). Symbol sizes in (b) indicate catchment areas in km2.

Mean daily baseflow (m
3 

s
-1

)

M
e

a
n

 r
e

la
ti
v
e

 e
rr

o
r 

ε M
R

E
 (
m

3
 s

-1
)

0.0

0.5

1.0

1.5

2.0

2.5

                       <3                  <10              <20              <50           <200

(45)                 (44)                (32)               (32)               (23)

Fig. 3. Distribution of the mean relative error for different mean

daily baseflow ranges. The number in brackets is the sample size

per range.

and Honduras had mostly values around 0.03–0.09 day−1

whereas catchments in Puerto Rico had values of 0.05 day−1.

In tropical Mexico, catchments close to the coastline had val-

ues of 0.03–0.10 days.

The stability of recession coefficients was assessed by

varying the window size TQF from 0–20 days. Results for

six catchments with different climate regimes and geograph-

ical areas are illustrated in Fig. 4a–f. Increasing TQF results

in a reduction of kbf , with the fastest decrease occurring in

the first days 0–3 days. The rate of reduction diminishes after

5–10 days in most cases. Complex patterns occur when win-

dow size increased beyond 10 days. Similar variations of kbf

and Q–Q∗ pairs were also observed for temperate Australian

catchments in the study of Van Dijk (2010).

4.3 Statistical analyses

Visual inspection of scatter plots (Fig. 5) already suggested

catchment recession coefficients to be correlated to vari-

ous climatic attributes. Of the respective terrain attributes,

only slope and tree cover appeared to show some correla-

tion (Fig. 5e and f). The rest of the catchment attributes did

not reveal a clear pattern (not shown). In addition, different

aquifer drainage potential classes did not seem to have any

influence on kbf either (Fig. 5).

Recession coefficient data showed a positively skewed

distribution and thus a non-parametric Spearman rho test

was used in the correlation analysis. The correlation ma-

trix is presented in Table 2. Significant strong correla-

tions were found between kbf and most climatic attributes;

slope and tree cover. As expected, cross-correlations oc-

curred between all climatic attributes. In addition, cross-

correlations between slope, tree cover and climatic attributes

were also observed. The best correlations for kbf were with

MAR and the Thornthwaite Moisture Index TMI (non-

parametric r∗ =−0.65). AI also showed good correlation

with kbf (r∗ =−0.64). Regression equations were computed

for kbf vs. MAR and AI, results are shown in Fig. 6 (no

power or exponential regression were possible for negative

values of TMI).

A two-parameter exponential relationship of MAR and AI

explained 49% of the variance in kbf. Only marginal im-

provement was achieved with the stepwise regression when

including the weakly correlated catchment elongation (CE,

r∗ = 0.138). The other catchment terrain attributes with ex-

planatory value were cross-correlated to climatic attributes

and therefore not used in the multivariate analysis. The equa-

tions and summary statistics of all regressions are shown in

Table 3.

A subset of catchments that were smaller and geograph-

ically close to each other, contiguous in some cases, were

analysed to see whether the correlation of catchment terrain

properties with kbf was confounded by the large geographical
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(e) (f) 

Fig. 4. Variation of estimated recession coefficient kbf (closed lines) and number of Q–Q∗ data pairs (dots) with an increase in TQF from

0 to 20 days. Values for mean annual rainfall (MAR in mm y−1), aridity index (AI) and seasonality index (SI) is show for each catchment

gauge data.

area and the different climates covered by the overall

dataset (cf. Fig. 2a). Relatively smaller groups of catch-

ments (<300 km2) were selected in north, central and south

Queensland and in Puerto Rico. Only clusters of larger catch-

ments (500–3000 km2) were left for analysis and so they

were selected in the absence of data more suited to the pur-

pose, in any case only two catchments were larger than 1500

km2. These were located in Panama, Senegal and Malaysia.

Relative residuals of the original regression of kbf and MAR

were analysed using scatter plots and non-parametric corre-

lation. Only slope and catchment elongation showed signifi-

cant correlations (r∗ = 350 and−250 respectively). Although

correlations were weak, scatter plots of such properties ver-

sus relative residuals showed some degree of spatial organi-

sation by location (Fig. 7).

5 Discussion

5.1 Pan tropical catchment dataset

In the present study, great care was taken in producing a good

quality daily streamflow dataset of unregulated flows (using

the georeferenced dam dataset of Saenz and Mulligan) for

tropical landscapes. A good range of climatic landscapes and

rainfall regimes has been covered, but data from hydrologi-

cally important areas such as the Amazon and Congo basins

are not yet represented in the analysis. Needless to say, their

inclusion is highly desirable.

5.2 Characteristics of recession coefficients

In general, higher (faster) recession coefficients were ob-

served for drier catchments. In the most arid catchments

(e.g. Namibia, arid parts of Australia) streamflow is typically
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Table 2. Spearman rank correlation matrix of recession coefficients and catchment attributes. kbf correlations with climatic and catchment

attributes are shown in bold.

kbf MAR PET AI TMI SI CE SLO DD TC SD DPI

kbf
MAR −0.650∗∗

PET 0.291∗∗ −0.453∗∗

AI −0.639∗∗ 0.979∗∗ −0.608∗∗

TMI −0.649∗∗ 0.987∗∗ −0.564∗∗ 0.996∗∗

SI 0.170∗ −0.436∗∗ 0.649∗∗ −0.534∗∗ −0.469∗∗

CE 0.138∗ 0.119 −0.068 0.105 0.108 0.008

SLO −0.380∗∗ 0.528∗∗ −0.693∗∗ 0.613∗∗ 0.587∗∗ −0.499∗∗ 0.100

DD 0.016 0.064 −0.210∗∗ 0.088 0.086 −0.005 0.027 0.171*

TC −0.425∗∗ 0.578∗∗ −0.577∗∗ 0.636∗∗ 0.618∗∗ −0.436∗∗ 0.161∗ 0.592∗∗ 0.353∗∗

SD 0.007 0.003 0.294∗∗ −0.056 −0.019 0.390∗∗ 0.064 −0.304∗∗ 0.191∗∗ −0.02

DPI 0.003 0.025 −0.005 0.012 −0.084 0.019 0.048 −0.017 0.287∗∗ −0.003 −0.01

∗ Correlation is significant at the 0.05 level.
∗∗ Correlation is significant at the 0.01 level.

Table 3. Summary of results, including r2 and standard error of es-

timate (SEE) for the exponential, logarithmic and power regressions

linking kbf with MAR and AI (n= 167).

Equation r2 SEE

kbf = 0.0356 + 0.2273× e−0.0014MAR 0.4850 0.0382

kbf = 0.5247 – 0.0619× ln(MAR) 0.4447 0.0396

kbf = 10.4370×MAR−0.7050 0.3850 0.0510

kbf = 0.0394 + 0.2087× e−2.2282AI 0.4865 0.0382

kbf = 0.0692 – 0.0552× ln(AI) 0.4414 0.0397

kbf = 0.0580×AI−0.6210 0.3720 0.0515

ephemeral and consequently mainly event driven. The pres-

ence of fast-draining perched aquifers may also explain

higher kbf. By contrast, lower recession coefficients (slower

drainage) were found for most of the humid tropics. Al-

though there were no good quality data to account for the

effects of soil depth and aquifer porosity, deep soils and per-

meable regoliths are widely present in tropical landscapes;

and are likely to represent an important source of baseflow

(Chappell et al., 2007). A recent three-year study in a small

catchment underlain by very deep soils in the central Ama-

zon Basin by Tomasella et al. (2008) showed an impor-

tant contribution to the groundwater system by the extended

unsaturated zone. Both unsaturated and groundwater flow

showed a delayed response to rainfall and most of the sea-

sonal variability in streamflow tended to be dampened by ei-

ther one or the other.

5.3 Predictors of recession coefficients

Climatic attributes proved to be the best predictors of kbf,

with MAR and AI together explaining 49% of the vari-

ance. The exponential and logarithmic regression equations

for AI and MAR had very similar goodness-of-fit statistics

but due to the nature of the fitted equations estimation errors

appeared higher for drier catchments in all equations. For

wetter catchments, both logarithmic and power relations ap-

proached the asymptotic value of 0.05 too gradually. The

robustness of the equations for MAR and AI intervals was

checked using box and whisker plots of relative residuals

for all equations. The exponential equations for MAR and

AI were slightly more robust than the other equations for

all intervals, and MAR was only marginally better than AI

(Fig. 8).

Of the terrain attributes, rainfall weighted slope (SLO),

tree cover percentage (TC) and catchment elongation (CE)

showed significant although weaker correlations with kbf.

The first two attributes were not included in stepwise re-

gressions due to the cross-correlation with MAR. A relation-

ship between tree cover, catchment slope and MAR is intu-

itively possible, for instance in the case of steep mountain-

ous terrain where difficulty of access increases the chances

of forest conservation and topography and altitude lead to

enhanced orographic rainfall. The negative weaker corre-

lation between catchment elongation (CE) and kbf was also

intutively possible, impliying the rounded catchments will

drain faster than wider catchments of similar area (e.g. Post

and Jakeman, 1996). Rainfall weighted slope also showed a

negative correlation, opposite to the one expected from the-

ory as in Zecharias and Brutsaert (1988, Eq. 1) and to re-

sults from similar correlation studies (Mwakalila et al., 2002;

Brandes et al., 2005). The negative correlation between re-

cession coefficients and rainfall weighted slope is counterin-

tuitive; what common sense tells is that rugged catchments

drain quicker than flatter ones (e.g. Post and Jakeman, 1996).

However this effect may have less relevance when catchment

areas are larger and other effects such as climate or complex

topography/geology override the effects of slope, this was
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Fig. 5. Scatter plots of recession coefficient kbf versus (a) MAR, (b) TMI, (c) AI, (d) SI, (e) SLO and (f) TC. Symbols denote a proxy for

aquifer drainage potential from WHYMAP (2010).
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Fig. 6. Regression equations for (a) MAR versus kbf and (b) AI versus kbf.

also observed in Post and Jakeman (1996) but their results

were not conclusive. A similar negative correlation was re-

ported in Van Dijk (2010). The geology proxy used in the

analysis, aquifer drainage potential, did not reveal any pat-

tern with kbf (Fig. 3) and its low correlation value indicated

no influence on recession coefficients (Table 2). One would

expect that geology and associated derivatives play a central

role in groundwater recession rates. This may well be as-

cribed to the lack of detailed geology at a global scale and the

variety and geographic extent and distribution of catchments

use in the study. Besides more detailed data, more robust

methodologies could be used to include these attributes and

the other catchment terrain attributes as covariates in regres-

sion equations. For example Detenbeck et al. (2005) used
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Fig. 7. Scatter plot of relative residuals (ratio of modelled to hydrograph-based estimated kbf) versus (a) rainfall weighted slope of catchment

(SLO) and (b) catchment elongation (CE). Elongated ellipses around Malaysian and Senegal data points are shown to illustrate possible

correlations of residuals at smaller scales for geographically close catchments.
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Fig. 8. Box and whiskers plot of relative residuals for exponential equations linking kbf to (a) a range of mean annual rainfall classes (MAR).

(b) Idem for aridity index (AI) range. The number in brackets is the sample size per range.

principal component analysis (PCA) to reduce dimensional-

ity in an analysis to determine correlations between flow and

velocity metrics in the North and South Shores of western

Lake Superior (USA).

Pan-tropical maps of kbf extending to 30◦ N and 35◦ S

were derived using the MAR regression equation and the

lower and upper bounds of the 95% confidence interval. The

resulting catchment kbf values are plotted in the map show-

ing the original value (Fig. 9). A reasonable agreement is

observed between original values and the ones using the re-

gression equation.

The analysis of relative residuals for smaller catchments

showed that catchment attributes such as slope (SLO) and

elongation ratio (CE) had weak correlations with kbf. Stud-

ies in catchments <100 km2 (e.g. Post and Jakeman, 1996;

Brandes et al., 2005) also showed the explanatory power of

terrain attributes and soils with respect to kbf or other base-

flow associated parameters. The present study and Van Dijk

(2010) have demonstrated a more important role of climatic

characteristics in relation to baseflow recessions across the

tropics and Australia at catchments scales >100 km2. Van

Dijk (2010, Fig. 7 for the AI vs. kbf plot) obtained similar

power relationships between MAR, AI and baseflow reces-

sions respectively for temperate Australian catchments. Esti-

mates of kbf using the equations derived in the present study

produced slightly higher estimates in these catchments, but

the form of the relationships were similar. Differences be-

tween the rainfall data, and the Priestley-Taylor PET formu-

lation in Van Dijk (2010) with the Hargreaves formulation in

the present study may explain these differences.

The current empirical equations for the estimation of kbf
are necessarily subject to the limitations and uncertainties of

the data used to derive them. There is no dense network of

streamflow gauges in much of the tropics; the same can be

said of the spatial density of gauges used to interpolate rain-

fall surfaces in the WORLDCLIM dataset (Hijmans et al.,

2005). Furthermore, the estimation of kbf was performed us-

ing long-term monthly climatologies, which would also yield

long-term kbf estimates. Coefficients will vary seasonally

and interannually, with different kbf estimates for dry-wet

years and seasons.

It is expected that better rainfall data will result in more

accurate relationships in the future. In addition, better soil

and geological data may also improve the predictions.
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(a) 

(b) 

(c) 

Fig. 9. Pan-tropical map of baseflow recession coefficient using the exponential regression equation and mean annual rainfall (MAR):

(a) equation representing the lower and (b) upper bounds of the 95% confidence interval and (c) original regression equation. Symbol

colours represent estimated kbf values of the 167 catchments used in this study.

6 Summary and conclusions

This study analysed the potential of various climatic and

terrain attributes to estimate baseflow recession coefficients

(kbf) for 167 unregulated tropical and subtropical catchments

with areas >200 km2. Linear reservoir theory was used to

estimate kbf from daily streamflow data (m3 s−1) obtained

from the Global River Discharge Center (GRDC). Stepwise

regression showed the overriding importance of climatic at-

tributes over terrain ones at this scale. The best predictors

for baseflow recession coefficient were mean annual rainfall

(MAR) and aridity index (AI) together explaining 49% of the

variance.

The interaction between climate and surface and subsur-

face attributes also plays an important role at smaller scales.

For example, catchment elongation (CE), a measure of catch-

ment shape, was also found to be statistically significant, al-

though weakly correlated. An analysis of clusters of catch-

ments of smaller size, showed that in these areas with pre-

sumably similar soils and geology, residuals of the regres-

sion could be explained by average catchment slope (SLO)

and CE.

Although climatic characteristics explained a great deal of

the variation in kbf, baseflow is catchment-specific and de-

pendent on the rainfall spatial and temporal patterns, land

cover and land use, catchment morphology, infiltration op-

portunities and soil water holding capacity, configuration of

the groundwater system and timing of groundwater discharge

to the stream. The differences in kbf found in humid and arid

catchments show the interconnection of climate and surface

and subsurface characteristics of catchments: ephemeral and

consequently mainly event-driven streamflow as well as the

occurrence of fast-draining perched aquifers may explain the

higher recession coefficients observed in drier catchments.
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The lowest recession coefficients in the humid tropics may be

attributed to excess rainfall recharging deep soils and porous

aquifers present in these areas (e.g. volcanic belts Central

Amazonia, sandstone basin forms in Northeast Thailand).

These sources may be an important source of baseflow dur-

ing dry weather.

If better data are obtained for these surface and subsurface

attributes, the prediction of baseflow in ungauged areas can

be improved accordingly.
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5.1 Introduction 

This chapter describes the pan-tropical implementation of the W3RA-LUM model and presents 

an evaluation of modelled against observed streamflows. The main features of the model are 

described in detail as well as the modifications introduced to make the model amenable to 

modelling the streamflow impacts of land use and land cover change (LUCC) through 

incorporation of the Soil Conservation Service Curve Number Method (SCS-CN, USDA, 1986). 

The SCS-CN method is currently the only method for global application of LUCC scenarios 

impact modelling that has a strong empirical basis and is responsive to both differences soil in 

type and level of soil degradation. The emphasis of the description – including the processes 

simulated, associated equations and model structure – is on those model components that were 

modified (to allow hypothesis testing) in the original AWRA-L model on which the W3RA-LUM 

model is largely based (Van Dijk, 2010a; Van Dijk and Renzullo, 2011). For a description of the 

model components not covered here, the reader is referred to Appendix D. The modifications 

and parameter estimation methods are described in detail below and include a brief discussion 

of estimated parameter values (Section 5.3.1). 

Several processes represented in AWRA-L were described using well-established relationships 

(Van Dijk, 2010a). Others followed a data-driven ‘downward’ approach (e.g. Sivapalan et al., 

2003), which resulted in a reduction of model dimensionality whilst still achieving acceptable 

results compared to more complex formulations (Van Dijk, 2010b; Van Dijk, 2010c). In order to 

understand the raison d’être of the structure and equations describing some of the processes 

simulated in W3RA-LUM, a background summary of the approach used in the development and 

implementation of AWRA-L is provided in Section 5.2. Previous model applications pertaining to 

LUCC studies are also discussed in this section. Section 5.3 describes the methods used for 

the implementation of W3RA-LUM pan-tropically. Results are presented and analysed in 

Section 5.4 and discussed in LUCC scenario modelling context in Section 5.5. Finally 

conclusions are drawn in Section 5.6. 
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5.2 Background 

5.2.1  Approach for model development 

Hydrological models attempt to describe naturally occurring hydrological processes. A model’s 

complexity will often be dictated by the problem (i.e., hypothesis) at hand and the processes 

that require a detailed description to address it. The use of the catchment scale, at which many 

hypotheses are typically tested, has frequently required simplifications of complex hydrological 

processes at smaller scales that have proved sufficiently robust at describing observations 

made at larger scales (e.g. streamflow, Savenije, 2001). Models grow in complexity when there 

is a need to address different hypotheses about the processes underlying a hydrological system 

(Beven, 2006). The additional assumptions and input parameters required to explain the other 

hypotheses will likely require more calibration to reproduce observations. This may result in 

more than one parameter set with similar explanatory value (Oreskes et al., 1996). A model in 

this situation may be over-parameterised and suffer from structural equivalence or ‘equifinality’ 

(Beven, 1996). Even if an ‘optimal’ model is defined, equifinality may still occur if during the 

calibration the optimum parameter values obtained compensate for errors in input and output 

data (e.g. streamflow data used in calibration) and initial boundary conditions (Beven, 2006). 

The aim of AWRA-L – to produce interpretable water balance component estimates, and as 

much as possible agree with water balance observations at a continental scale (Van Dijk, 

2010a) – entailed predictions in different environments and with limited observational data. Thus 

a compromise needed to be found between the simplest alternative formulation that could 

explain observed aspects of the catchment water balance and the complexity of the processes 

required to be modelled.  

A data-driven ‘downward’ approach was followed for model development (Klemeš, 1983;

Sivapalan et al., 2003). Climatological inputs and streamflow observations were available for 

several hundred catchments of (size range of 5−2000 km2) across Australia. Quality-controlled 

streamflow data and interpolated climatic data were used to estimate storm flow (260 

catchments) and baseflow (183 catchments) using storm flow recession and baseflow 

separation techniques respectively (Van Dijk, 2010b, Van Dijk, 2010c). These were 
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subsequently used to test and calibrate several variants of lumped and/or distributed models (in 

the case of soil water balance) commonly used in catchment modelling, including storm runoff 

models (Van Dijk, 2010c), (non)linear reservoir variants of groundwater flow models (Van Dijk, 

2010b) and soil water balance models (Van Dijk and Marvanek, 2010). The climatic and 

biophysical conditions of the catchments used in the latter analysis also included catchments 

with (sub)tropical conditions, although most were located in temperate southeast Australia (Van 

Dijk, 2010c). 

A version of Akaike's Final Prediction Error Criterion (FPEC; Akaike, 1970) and Nash-Sutcliffe 

model efficiency (NSME; Nash and Sutcliffe, 1970) were used to guide interpretation for model 

adoption. The version of FPEC used in AWRA-L considers the number of degrees of freedom in 

a penalisation factor used to scale the estimated prediction error; this provides an objective 

metric to explain the trade-off between the number of fitting parameters and the remaining 

unexplained variation in observations. The approach was also used to investigate whether 

parameters could be related to catchment climatic and geomorphologic attributes to increase 

the likelihood of predictive performance in ungauged catchments. Equations with explanatory 

value that described the parameters in terms of these catchment characteristics were obtained 

using step-wise regression1. The following main conclusions were drawn with respect to the 

selection of a storm runoff model (Van Dijk, 2010c, more details to follow in Section 5.3.1.2): 

• Four model structures with similar functional form to the SCS-CN method and with a 

maximum of six parameters were investigated. 

• A non-linear response model with two or three parameters provided the optimal model 

structure for modelling storm flow in 260 catchments in Australia, with a median Nash 

Sutcliffe model efficiency of 0.64. 

The main soil water balance fluxes (groundwater recharge, effective infiltration and soil water 

uptake by roots or soil evaporation) were estimated in order to evaluate alternative soil water 

balance models. The following main conclusions were drawn with respect to the selection of a 

soil water balance model (Van Dijk and Marvanek, 2010, more details to follow in Section 

5.3.1.3): 

                                                     
1

Chapter 4 provides an example of how a similar approach was used to parameterise the groundwater recession 
coefficient in W3RA-LUM using pan-tropical streamflow data.
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• A simplified two-parameter soil water balance model based on the Richards’ equation 

(Richards, 1931) and the Brooks-Corey relationships (Brooks and Corey, 1964)  was 

compared to similar explicit soil moisture accounting (ESMA) routines used in several 

lumped catchment models. 

•  The simplified model captured the characteristic behaviour of a free-draining soil profile 

and was consistent with more computationally demanding numerical solutions of the 

Richards’ equation. 

• Conceptually, the simplified model had advantages over the lumped models used, with 

parameter values agreeing better with a priori values. 

The following main conclusions were drawn with respect to the selection of a groundwater flow 

model (Van Dijk, 2010b, more details to follow in Section 5.3.1.4): 

• Baseflow estimates obtained with the one-parameter linear reservoir approach were as 

good as those obtained with a non-linear two parameter reservoir approach. 

The ‘data-driven’ approach, besides combining the power of pooling data from hundreds of 

catchments in Australia (e.g. Sivapalan, 2009), strives to develop the most parsimonious model 

components that agree well with observations for very dissimilar hydrologic environments. The 

approach entailes that (i) increases in complexity need to be justified by an increased ability to 

explain observed phenomena (by using the Akaike's Final Prediction Error Criterion); (ii) model 

components are formulated in such a way as to be consistent with physical laws and principles, 

and catchment hydrological process knowledge and; (iii) formulations have a minimum number 

of parameters, particularly parameters that are poorly predictable a priori. 

AWRA-L outputs, including streamflow, evaporative fluxes and soil moisture, have been 

extensively evaluated in Australia (e.g. Van Dijk and Warren, 2010) and the model is currently 

used operationally to produce water balance information by the Australian Bureau of 

Meteorology (Band et al., 2012; Stenson et al., 2012). 
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5.2.2 Previous evapotranspiration and land use impact studies using AWRA-L 

King et al. (2011) performed a multi-model comparison of actual evapotranspiration (AET) 

estimates, which included three dynamic models and five satellite-based AET models. Among 

the former was an uncalibrated version of AWRA-L (v 0.5). Two types of evaluation are of 

interest here: (1) 8-day averaged AET time-series estimated by the model were compared 

against flux tower estimates for six sites in Australia with different climates and land covers; and 

(2) long-term mean annual AET estimated by the model against long-term mean annual AET

values obtained from catchment water balance for 568 catchments in Australia. In evaluation (1) 

AWRA-L performed well for most sites except in an open water area site (mean coefficient of 

determination r
2=0.83 and relative bias Relbias=-0.16%, excluding the open water site). In 

evaluation (2) AWRA-L performed similarly to the land surface models and better than the 

satellite-based estimates (r2=0.56 and Relbias=-3.5%). 

Overall, AET products from the two dynamic models (including AWRA-L) and one satellite 

algorithm (see Guerschmann et al., 2009 for details) provided the best estimates. 

Van Dijk et al. (2012, see Attachment C for full details) used AWRA-L and a formulation of the 

Budyko framework2 (Budyko, 1974) that included vegetation cover types to assess the likely 

causes of the documented weak influence of vegetation cover on streamflow from non-

experimental catchments with mixed land cover (e.g. Zhang et al., 2004; van Dijk et al., 2007; 

Oudin et al., 2008; Donohue et al., 2010; Peel et al., 2010). A formulation of the Budyko 

framework that accounted for vegetation – the so-called Zhang model (Zhang et al., 2001) – 

successfully detected land cover influence in a global streamflow dataset of mostly small (<1 

km2) catchments with homogenous land cover. The ‘w’ parameter in the Zhang et al. (2001) 

model can be interpreted as a measure of the vegetation’s transpiration efficiency and was 

found to be different for forests (wforest=2.0) and herbaceous vegetation (wherb=0.5) after 

calibration.  

                                                     
2
 Budyko postulated that the long-term average annual evapotranspiration from catchments is determined by rainfall 

and available energy and formulated a simple model that showed good agreement with the long-term water balance for 
catchments in the former USSR (Zhang et al., 2008).   
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Contrary to the idealised conditions of small catchment experiments in which a strong signal of 

land cover is typically well established (and generally translated into noticeably lower long-term 

water yield in catchments with mostly forest cover compared to catchments with mostly 

herbaceous cover; see also Brown et al., 2005), the above mentioned studies exploring the 

effects of mixed land cover on streamflow either reported a much smaller influence, no 

statistically significant influence, or even an influence contrary to what was expected (at least for 

some vegetation and climate types). As also highlighted in Chapter 2, the use of  a variant of 

the Budyko framework demonstrated only a weak signal of LUCC (in this case 40% of Acacia 

woodland removal) in the Comet catchment (16,440 km2). 

In the study of Van Dijk et al. (2012), the Zhang et al. (2001) model was used to detect land 

cover influence in 278 catchments in Australia having mixed land cover. Part of the aim of the 

former study was to assess if a stronger land cover signal could be detected with a more 

complex model (AWRA-L in this case) than with the Zhang model. However, any process model 

incorporating vegetation dynamics could have been chosen to test this hypothesis. The Zhang 

formulation was re-arranged to predict mean annual streamflow using optimised values for 

wforest and wherb values and the respective fractions of catchment cover, FCOVforest and FCOVgrass

respectively. Resulting optimised parameter values were very close (wforest=1.98 and wherb=1.91) 

and this translated into an average water use of forest cover only 2% greater than that of 

herbaceous cover. Further, reducing the model to a single parameter yielded a w value of 1.95. 

These results support the findings of the weak influence of vegetation cover in the studies 

previously referred to (Zhang et al., 2004; Van Dijk et al., 2007; Oudin et al., 2008; Donohue et 

al., 2010; Peel et al., 2010). Subsequently, uncalibrated AWRA-L predictions of mean 

streamflow for the same 278 catchments, but using hypothetical scenarios of full forest or full 

herbaceous cover, were compared to the equivalent Zhang model with generic values for w (2.0 

and 0.5 for forest and herbaceous vegetation cover, respectively), thus depicting the same 

vegetation cover conditions as used for the AWRA-L predictions (i.e., full forest or full 

herbaceous cover). Uncalibrated AWRA-L predictions were able to reproduce the differences 

between forest and herbaceous cover predicted by the Zhang model with generic values for w 

(Figure 5.1). 
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Figure 5.1 Comparison of uncalibrated AWRA-L simulated streamflow for the 278 catchments 
for full forest cover (green triangles) and herbaceous cover (orange circles) and the Zhang 
model for full forest cover (green line) and herbaceous cover (orange line). The Y and X axis 
correspond to the ratio of evapotranspiration (E) to potential evapotranspiration (PE) and 
precipitation (P) to PE respectively (after van Dijk et al., 2012). 

The ability of the uncalibrated AWRA-L to reproduce streamflow (Table 1, see Appendix F) was 

better than that of the Zhang model as depicted in Figure 5.1, and also better than that of model 

variants with calibrated w parameters. It was concluded that AWRA-L satisfactorily predicted 

streamflow in the 278 catchments with mixed land cover and that it produced a land cover 

signal of similar or higher magnitude as the Zhang model. A corollary finding of the previous 

result is that AWRA-L can also be useful in predicting the hydrological impacts of LUCC in 

scenario modelling, although further testing is required with respect to sensitivity of the model to 

LUCC (see Chapter 6). The study also advanced other biophysical, climatic and methodological 

issues that may well prevent Budyko-type models from detecting a strong vegetation cover 

signal in catchments with mixed land cover (see Appendix F). 

5.3 Methodology 

5.3.1 W3RA-LUM Model description 

The technical description – including the appendices to which it refers – of the hydrological 

processes simulated by W3RA-LUM and the corresponding equations and justifications of 

structure or specific parameter values, is largely based on Van Dijk’s (2010a) description of 

AWRA-L, except for the modifications introduced here. These modifications and specific model 
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parameters values, either as part of AWRA-L or W3RA-LUM development, are described in 

detail below. 

W3RA-LUM is a one-dimensional grid-based land surface model that uses lumped models of 

water balance of the soil, groundwater and surface water stores applied to individual grid cells. 

W3RA-LUM currently runs at a 1° grid resolution and at a daily time-step, commensurate with 

the resolution of high-quality long-term climatic data available for LUCC studies (as discussed 

more fully in Chapter 3). 

The current model makes the fundamental assumption that lateral redistribution of water 

between grid cells can be ignored without having an impact on water balance estimates. This 

assumption is generally acceptable for the grid cell resolution used here, although it is likely to 

be violated areas having large surface water bodies or in areas that receive important surface 

and/or groundwater inflows. Lateral water redistribution of surface, subsurface and groundwater 

movement (e.g. floods, irrigation or lateral groundwater inflows, run off – run on processes) 

becomes significant at higher resolutions and are key at the hillslope scale. Arising from the 

previous assumption, it follows that precipitation within the grid cell is the only source of water 

and that all sources of lateral discharge occur within the cell. 

Other processes not yet simulated in the model are:

• River routing, although aggregation for larger catchments over monthly periods might 

not be greatly affected by the lack of routing per se.  

• River management such as regulation, reservoir operation and human extraction. 

Under these assumptions and model structural simplifications, mainly lack of routing, model 

outputs are best interpreted as local fluxes in catchments up to the model’s grid resolution (i.e., 

10,000 km2). 

The following processes are simulated in W3RA-LUM: (i) partitioning of incident precipitation 

into interception evaporation and net precipitation; (ii) partitioning of net precipitation into 

infiltration, infiltration-excess surface runoff, and saturation-excess runoff; (iii) snow melt and 

snow accumulation; (iv) vertical water movement in a topsoil store, including infiltration, 

drainage and soil water evaporation; (v) vertical water movement in a shallow soil store 
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including incoming (from the above store) and exiting drainage (to the store below) and root 

water uptake (transpiration); (vi) vertical water movement in a deep soil store (idem as for 

shallow soil store); (vii) vertical water movement in a groundwater store including recharge, 

capillary rise and discharge; and (viii) surface water body dynamics, including inflows from 

surface runoff and river discharge, open water evaporation and catchment water accumulation 

(flooding). In addition, vegetation cover is dynamically adjusted through a simple model that 

predicts water-related vegetation phenology3. The model design attempts to integrate simulated 

processes in a modular fashion to allow flexibility and the inclusion of alternative processes. The 

design also considers easy linkage to other data streams via data assimilation (cf. Van Dijk, 

2011) and multi-objective global calibration (Zhang et al., 2011). These features have been 

identified as promising pathways in advancing hydrological modelling methods (Buytaert et al., 

2008). 

A flux diagram of the aforementioned processes is shown in Figure 5.2. The process equations 

of the model components that differ from the original AWRA-L model, enclosed by the red 

dashed box in Figure 5.2, are described in Section 5.3.1. 

The version of the model used here simplifies subgrid variation in vegetation cover by 

considering only two ‘hydrological response units’ (HRUs):  

• Deep-rooted tall vegetation (‘forest’) which can use water from shallow and deep soil 

layers.  

• Shallow-rooted short vegetation (‘herbaceous’) which can only use water from shallow 

soil layers. 

Each HRU can be parameterised differently according to vegetation and soil characteristics. 

Deep-rooted tall vegetation continues to have access to soil water during dry periods and has a 

canopy that fluctuates less over time than does the canopy of shallow-rooted vegetation, as a 

response to the availability of water (Van Dijk et al., 2010a). It follows that, soil and energy 

balances are simulated separately for each HRU (Figure 5.2, large green box). Although it is a 

far from a complete representation of land cover types, the system is flexible and can 

                                                     
3

phenology: relating to cyclical biological events in response to climatic conditions, in particular greening and 

senescence in response to water availability. 
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5.3.1.1 Mass balance 

The mass balance equations used to describe the soil water balance are as follows (Van Dijk et 

al., 2010a): 

Canopy partitioning of precipitation (Pg) into net precipitation (Pn) and interception evaporation 

(Ei, see Appendix D2.2): 

( ) ( ) ( )tEtPtP ign −=
.
         5-1 

A snow melt model using a degree-day factor from the HBV snow model (Bergström, 1995) was 

incorporated into the model. Net precipitation (Pn) falls as snow if the average daily temperature 

falls below 0°. Snow may melt and/or may refreeze. Snow accumulates as solid snow pack in a 

solid snow storage (SSS, in mm) or melt water in a liquid water storage (SSL, in mm) up to a 

certain maximum holding capacity, any surplus reaches the top soil and is partitioned into 

surface runoff (QR) and infiltration (I) (no storage term):  

Soil surface partitioning of net precipitation (Pn) 

( ) ( ) ( )tQtPtI Rn −= .         5-2 

Surface top soil water balance, comprising top soil water storage (S0), infiltration, soil 

evaporation (ES) and top soil drainage (D0): 

( ) ( ) ( ) ( ) ( )tDtEtItStS s 000 1 −−+=+ .       5-3 

Shallow soil water balance, comprising shallow soil water storage (SS), shallow root water 

uptake (US), top soil drainage (D0) from the layer above, and shallow soil water drainage (DS): 

( ) ( ) ( ) ( ) ( )tDtUtDtStS SSss −−+=+ 01 .       5-4 

Deep soil water balance, comprising deep soil water storage (SD), DS, capillary rise from the 

groundwater (Y), deep root water uptake (UD), and deep drainage (DD): 

( ) ( ) ( ) ( ) ( ) ( )tDtUtYtDtStS DDSDD −−++=+1 .      5-5 
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Groundwater balance, comprising ground water storage (Sg), DD, Y, groundwater evaporation 

(Eg) and groundwater discharge (Qg): 

( ) ( ) ( ) ( ) ( ) ( )tYtQtEtDtStS ggDgg −−−+=+1
.
      5-6 

River water balance, comprising surface water storage (Sr), QR, Qg, and stream discharge 

(Qstream): 

( ) ( ) ( ) ( ) ( ) ( )tQtEtQtQtStS streamrgRrr −−++=+1
.
      5-7 

The remainder of the present description will focus on the processes and/or parameters that 

were modified relative to AWRA-L (see red dashed box in Figure 5.2), notably: (i) Soil surface 

partitioning of net precipitation into surface runoff and infiltration, (ii) soil water balance, and (iii) 

groundwater dynamics. 

5.3.1.2 Surface runoff (QR)   

The following equations describing surface runoff were selected using the ‘downward’ approach 

mentioned in Section 5.2. The terms between brackets in equation 5-8 can be interpreted as 

describing infiltration excess and saturation overland flow, respectively (Van Dijk, 2010a): 
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where QR is estimated event surface runoff (mm), fsat is the groundwater saturated area fraction 

(dimensionless), fwater is the fraction area covered by water (dimensionless), Pn is the net event 

precipitation (mm), and Ii is the initial infiltration (mm). The other terms (I0, Smax, SGref) are 
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parameters that were either estimated using reasonable values a priori or were inferred using 

relationships with catchment climatic and/or geomorphologic attributes (see below). 

Parameter estimation 

The initial infiltration Ii represents the initial amount of precipitation required to wet the soil 

before any surface runoff begins. Using streamflow data from 260 catchments in south-eastern 

Australia, a median initial retention capacity I0 of 8 mm was derived, whereas optimising rather 

than prescribing I0 led to only minimal improvement in model performance improvement (Van 

Dijk, 2010b). It is noted that the effects of precipitation interception are implicit in the values of

I0=8 mm estimated by Van Dijk from the streamflow data (2010c), whereas in W3RA-LUM these 

are computed separately through a canopy interception loss model (see Appendix D2.2). A 

conservative default estimate of I0=1 mm was adopted here in order to consider other initial 

losses (i.e., initial infiltration losses and surface storage losses) in the SCS-CN method (see 

below). 

The parameter SGref, representing the hypothetical groundwater storage at which the entire 

catchment area is saturated, was related to catchment mean annual precipitation (MAP, in mm). 

MAP explained 28% of the variation in SGref among the cited 260 catchments (Section 5.2.1) 

according to: 

34.215.8 MAPSGref = .         5-10 

This formulation of SGref suggests that the groundwater-saturated area fraction (fsat, Eq. 5-9) 

increases faster with increasing groundwater storage for a catchment with lower precipitation 

than for a catchment with comparatively higher precipitation. This may be related to partial-area 

runoff responding to high intensity precipitation, possibly in fast-draining (perched) saturated 

areas or degraded areas with limited infiltrability and limited natural storage characteristic (e.g.

Petheram et al., 2008, although for Northern Australia). 

The parameter Smax (in mm), interpreted as the potential soil maximum storage capacity for 

which half of net precipitation on unsaturated soils is able to infiltrate and the other half runs off, 

was estimated here following the SCS-CN method. The two terms between brackets in 



5-14 

Equation 5-8 can be interpreted to describe infiltration excess and saturation overland flow 

respectively. The first term of equation 5-8 describing infiltration excess overland flow is 

mathematically equivalent to the surface runoff term in the SCS-CN (QCN, mm d-1) method: 

( )
( ) max

2

SIP

IP
Q

ag

ag

CN
+−

−
= ,         5-11 

where Pg is gross event precipitation (mm) and Ia is the initial abstraction loss (interception, 

initial infiltration losses and surface storage losses).  To avoid an independent estimation of Ia in 

the SCS-CN method, a linear relationship with Smax was proposed: Ia=�Smax, where � is the initial 

abstraction ratio. The linear relationship was empirically justified on the basis of measurements 

made in catchments of less than 5 ha (Ponce and Hawkins, 1996). Although there was 

considerable scatter in the data, 50% of the values fell between 0.095 and 0.38. A value of 

�=0.2 was then adopted (Ponce and Hawkins, 1996). Unfortunately, the details of the data 

sources underlying the relationship have been lost (Hawkins et al., 2009). Using �=0.2 in 

Equation 5-11 yields:  
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For convenience, Smax was converted into a dimensionless parameter (ranging between 0 for 

maximum theoretical storage to 100 for zero storage) commonly referred to as the curve 

number (CN): 

254
25400

max −=
CN

S .         5-13 

Curve numbers were originally estimated using recorded rainfall-runoff data from small 

instrumented catchments in the USA (Hawkins et al., 2009). Each catchment was assumed to 

be represented by a Hydrologic Soil Group (HSG) and a Hydrologic Soil Condition (HSC). The 

SCS-CN method considers four HSGs corresponding to different classes of final infiltration rates 

(i.e., from a soil after prolonged wetting): group A with high infiltration rates, B, C and D with 

intermediate, low and very low infiltration rates respectively (USDA, 1986). The effect of land 

cover and/or treatment is characterised by the HSC. The three types of HSC considered in the 
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SCS-CN method (good, fair and poor) depend on the effects of land use and cover type on 

infiltration and surface runoff generation. For instance, a good hydrologic condition indicates 

that the soil has low surface runoff potential. Soil condition is generally determined in the field 

by considering such factors as vegetation density, litter and surface roughness (USDA, 1986). 

Tables and charts for the derivation of CN values for different types of land cover and land use, 

Hydrologic Soil Condition (HSC) were produced, but unfortunately the original data for only a 

few sites are currently documented and most have been lost (Hawkins et al., 2009). Although 

empirical in its derivation, different authors have justified the equations on theoretical grounds 

(e.g. Schaake et al., 1996; Yu, 1998; Mishra and Singh, 2003). The method has been 

successful because of its simplicity and continues to be used authoritatively (see, among 

others, Beck et al., 2009; Wang et al., 2012; El-Hames, 2012). In addition, there have been 

numerous efforts to enhance its robustness (e.g. Mishra and Singh, 1999; Michel et al., 2005).  

Recent progress in remote sensing-based mapping of land use and land cover and the 

availability of soil maps at a global scale makes the estimation of a global map of CN feasible, 

albeit within the limitations and uncertainties of the respective data sources. However, due to 

the fact that CN values were originally developed using regional data (i.e., mid-West of the US), 

care should be exercised when translating some of these CN values to regions with very 

different climate and soils (Ponce and Hawkins, 1996; Descheemaeker et al., 2008; Sartori et 

al., 2008). 

Published CN values for different HSGs, land cover and HSCs were sourced and/or modified 

from USDA (1986) and Hong and Adler (2008) (Table 5-1). A method similar to the one used by 

Hong and Adler (2008) was followed in order to obtain a global map of CN values using and/or 

modifying existing global maps of (among others) land cover and land use, HSC and HSG. 

Hong and Adler (2008) considered only land cover and land use and HSG to derive a CN map 

for soils with fair hydrologic conditions. Here, HSC was explicitly considered, and a global 

satellite-derived proxy of land degradation, expressed in terms of trends in the long-term rain-

use efficiency (RUE) adjusted normalised difference vegetation index (NDVI), was used to 

determine HSC pan-tropically. Bai et al. (2008) derived a global proxy for land degradation 

using trends of 15-day, 8 km grid cell, and estimates of NDVI for 1981–2003 to infer areas with 
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a long-term decline in ecosystem function and productivity (in terms of NDVI) that were not 

related to precipitation effects. Here, each grid cell of the Bai et al. (2008) global map was 

ascribed a HSC type based on the slope (or lack thereof) of the negative RUE adjusted 

normalised NDVI trend. A global map of HSC was obtained by ascribing good hydrologic 

conditions to grid cells with positive or no trend, fair to grid cells with trends between 0 and -0.02 

and poor to trends lower than -0.02 (Figure 5.3a). Although this is a subjective classification, the 

resulting pan-tropical map of HSC showed a reasonable agreement with the Bai et al. (2008) 

land degradation categories (Figure 5.3b and c). 

        

 Figure 5.3 (a) Classification of Hydrologic Soil Condition (HSC) based on trends of RUE 
adjusted normalised NDVI (Bai et al., 2008, see text for explanation); (b) comparison of HSCs in 
South Africa with (c) land degradation categories as defined in Bai et al. (2008). Note that 
Swaziland, Lesotho and bordering countries are masked out in the latter two maps. 

Next, the 1 km grid cell Harmonised World Soil Database (HWSD; Nachtergaele et al., 2012) 

based on the FAO Soil Map of the World (FAO, 1977) was used to obtain a global map of 

HSGs. The FAO Soil Map of the World was prepared mainly for agricultural purposes and soil 

classifications are mostly based on edaphic and pedological characteristics. Consequently, 

most of the detailed mapping was performed in areas with agricultural land use, whereas 

(c)
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uplands, mountains and forested areas were poorly sampled. Perhaps the greatest 

disadvantage of the map is the coarse resolution and the qualitative information on hydraulic 

properties (Terribile et al., 2011). Despite these limitations, the FAO map is still the only 

worldwide soil classification that provides consistent, harmonised soil characteristics for each 

soil unit (Eswaran et al., 2002) and has been used in several large-scale hydrologic modelling 

applications (e.g. Döll et al., 2003; Gudmundsson et al., 2012; Zhao et al., 2012). 

As previously mentioned, the SCS-CN method considers four HSGs: group A with high final 

infiltration rates, and groups B, C and D with intermediate, low and very low final infiltration rates 

respectively (USDA, 1986). The SCS HSG classification rules were developed for soils in the 

USA and are mainly based on soil texture. There are no established criteria to apply the same 

rules outside the USA. For instance, generally well-drained Ferralsols (FAO soil classification; 

IUSS Working Group WRB, 2006) would be classified as type D or C due to their clay content 

(Sartori et al., 2008).  Here, HSGs were equated to the qualitative FAO drainage classification 

based on soil types and adjusted for tropical soil characteristics (Table 5-2) to obtain a global 

map of HSGs (Figure 5.4). 

The currently used classification has limitations inherited not only from the coarse scale of the 

FAO map on which it is based, but also from the fact that soil types with potentially different 

drainage characteristics are lumped together by necessity. For example, different Ferralsols 

may well exhibit different drainage characteristics based on differences in their clay mineralogy   

(Nortcliff and Thornes, 1989; Tomasella and Hodnett, 1997; Elsenbeer, 2001). In general, clay 

mineralogy affects soil permeability because of its effects on aggregate stability and structure 

(Driessen et al., 2001). This is also case for the Acrisols Groups in the FAO classification; these 

soils are in reality of the ‘Acrisol-Alisol’ type which is not yet mapped separately at the global 

scale (Chappell et al., 2007). Alisols are comparable to Acrisols but less strongly weathered and 

have a dense argicllic B horizon containing 2:1 clay minerals that restrict drainage (Driessen et 

al., 2001). Conversely, Acrisols proper have low activity clays (mainly kaolinite and some 

gibbsite) and are generally well drained (Driessen et al., 2001). 
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Table 5-2 Equivalent of FAO drainage class and SCS Hydrologic Soil Group (HSG)  

FAO Drainage class HSG 

1 Very Poor D Very low infiltration rates 

2 Poor D 

3 Imperfectly C Low infiltration rates 

4 Moderately Well B Moderate infiltration rates 

5 Well A High infiltration rates 

6 Somewhat Excessive A 

7 Excessive A 

The 1 km grid cell resolution UMD Global Land Cover Classification of Hansen et al. (2000) was 

used to characterise land use pan-tropically. The land cover categories in the UMD map are a 

close match to those listed in Table 5-1. 

Figure 5.4 Map of Hydrologic Soil Groups (HSG) across the tropics based on the Harmonised 
World Soil Database (HWSD; Nachtergaele et al., 2012). 

The HSC map was resampled to the 1 km grid cell resolution of the land use/land cover and the 

HSG maps. Subsequently CN values were obtained by linking the latter maps to the 

corresponding CN values in Table 5-1. The resulting CN map was resampled to 1° grid cell 

resolution by averaging the respective CNs in the 1 km grid cell UMD map, the result of which is 

shown in Figure 5.5a. Surface runoff amounts for a uniformly distributed design event rainfall of 

50 mm (using Equation 5-12) across the tropics are shown in Figure 5.5b. Finally, the W3RA-

LUM parameter Smax was obtained from CN values using Equation 5-13. 
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Figure 5.5 (a) Pan-tropical CN values for current conditions; and (b) surface runoff for a 
uniformly distributed design rainfall of 50 mm.  

Pan-tropical values of CN in Figure 5.5a are normally distributed (mean=71 and standard 

deviation=8) with 90% of the values falling between 60 and 91. Upon visual inspection, some of 

the values reported here appear to be different from those reported in Hong and Adler (2008). 

The cause of this discrepancy may well be the fact that the HSG classification used by Hong 

and Adler (2008) was based on soil texture only and not on different HSCs. For example, values 

of CN are high in the Amazon and in the Congo’s forests (~75–95). In terms of the prevailing 

land cover and soil types this seems counterintuitive since both areas have generally well 

drained Ferralsols as dominant soil type (FAO, 1977). According to Table 5-1, even for poor 

HSCs, their CN values should be between 39 and 64. The values reported here are similar to 

validated empirical values in various tropical locations and elsewhere (for tropical locations, see 

Dilshad and Peel, 1994; Sartori et al., 2008; Descheemaeker et al., 2008). 

5.3.1.3 Soil water drainage (DZ) 

Soil water content in W3RA-LUM is expressed in relative terms (i.e., as a fraction of the amount 

held at field capacity) and is defined as follows: 
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zFC

z
z

S

S
w =  ,           5-14 

where Sz (mm) is the amount of water stored in layer z (with the subscript z replaced by 0, S or 

D as appropriate to denote topsoil, shallow soil, or deep soil, respectively), and SzFC (mm) the 

available water content at field capacity. Soil water content is assumed to represent the 

difference between remaining water in layer z one day after a saturation event (similar to the 

definition of field capacity) and the remaining soil water remaining when soil evaporation (in the 

case of S0) or root water uptake (in the case of SS and SD) cease. 

Soil drainage (for each layer) is defined as follows: 

zdrainZ SfD = ,          5-15 

and 

�
�
�

�
�
�
�

�
−=

z
FCdrain

w
Kf

1
1,max

,

 if wz > 1       5-16 

( )[ ]zFCdrain wKf −−= 1exp β , if wz � 1       5-17 

where Dz is the drainage from layer z (mm d-1), fdrain is the drainage fraction (dimensionless), KFC

is the drainage fraction at field capacity (dimensionless) and � drainage function exponent 

(dimensionless).  

Parameter estimation 

The parameters KFC, � and SFC were calibrated by fitting Equation 5-15 against values of 

groundwater recharge and effective infiltration obtained from streamflow observations in 198 

Australian catchments (Van Dijk and Marvanek, 2010). Instead of the three soil layers 

conceptualised in AWRA-L, a single free draining soil layer was used here. This is not expected 

to affect the estimated values of KFC and � (Van Dijk et al., 2010a). To estimate the moisture 

fluxes going in and out of the soil layer, it was assumed that the rise in baseflow was equal to 

the amount of groundwater recharge and that effective soil infiltration and retention was equal to 

the difference between net precipitation and storm flow. Also, actual evapotranspiration (AET) 
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was estimated independently (Guerschman et al., 2009) by scaling potential evapotranspiration 

(E0) using vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer 

(MODIS). Estimated AET included transpiration by vegetation, interception losses and soil 

evaporation. Values obtained for the parameter � (median=4.5, range=0.7–8.4) and KFC 

(median=0.029, range=0.01–0.3) were in accordance with a priori estimates from pedotransfer 

functions. Testing showed that � could be prescribed at 4.5 with minimal impact on model 

performance. A relationship that explained 40% of the variance in KFC values was found with 

catchment humidity (H=P/ E0): 

18.30685.0 HKFC = .         5-18 

This equation suggests that soils in wetter catchments are better drained and is consistent with 

published differences in soil drainage and infiltration capacity (everything else being equal) 

between humid- and arid-zone soils (Van Dijk, 2010a). This is most likely to reflect an enhanced 

infiltration capacity under more humid conditions due to a better developed vegetation cover 

and associated biological processes. Minimum catchment greenness (a measure of deep-

rooted vegetation) explained 24% of the variance in storage at field capacity (SFC). 

In AWRA-L the top (S0), shallow (SS) and deep (SD) soil layers have been assigned 30, 200 and 

1000 mm storage capacity respectively. These values were adopted from a relationship 

between satellite-observed vegetation greenness (MODIS Enhanced Vegetation Index) and 

catchment moisture status that explained 24% of the variance between catchments. The 

relationship suggested a storage of around 1000 mm for forested catchments and 140 mm for 

catchments with little forest cover, in accordance with values for plant available water capacity 

in Australia (Van Dijk, 2010a). 

To derive comparable spatially distributed soil water contents pan-tropically, the overall soil 

water storage capacity of the soil layer under consideration at field capacity is defined in W3RA-

LUM as follows: 

zFCzzFC DS θ×= ,         5-19 



5-23 

where Dz is soil layer depth (mm) and �zFC (mm mm-1) is the fractional soil water content at field 

capacity. 

Representative soil depths and fractional water content at field capacity were obtained from 

data found in the public domain. For D0 and �0FC, the median depths and fractional soil water 

content at field capacity for the top soil, respectively, were obtained from the WISE Soil Profile 

Data produced by the International Soil Reference and Information Centre (ISRIC, Batjes, 

2008). This database includes data for some 4382 soil profiles from 149 countries. Soil profiles 

obtained for the tropics accounted for almost 80% of the database, with Africa holding 41%, 

followed by South America and the Caribbean (18%), Southeast Asia (13%), and  South Asia 

and Oceania (8%). S0FC values for the entire soil profiles were subsequently spatially distributed 

by linking the data for each soil group with the corresponding soil units in the Harmonised World 

Soil Database.   

Soil depths DS and DD were obtained from the 1° grid cell resolution Global Dataset of 

Ecosystem Rooting Depths (Schenk and Jackson, 2002) using the depths containing 50% and 

95% of all roots respectively. The Schenk and Jackson (2002) database considers 475 vertical 

root profiles from 209 geographic locations and uses linear regression models linking  plant life-

form dominance, climate, and soil variables. These simple linear models explained as much as 

50% of the variance in rooting depths for various biomes and highlighted that much deeper 

rooting depths were found in (seasonally) water limited ecosystems such as those found in 

eastern Amazonia and the Sahel. Water content at field capacity for the shallow (�SFC) and deep 

soil (�DFC) layers were sourced from the 1° grid cell resolution Global Gridded Surfaces of 

Selected Soil Characteristics (Global Soil Data Task, 2000), both based on the FAO Soil Map of 

the World (FAO, 1977) and the World Inventory of Soil Emission Potentials (WISE) WISE 

pedon-database (also produced by ISRIC) (Batjes, 1995). The aforementioned rooting depth 

and soil water content at field capacity data were specifically developed for use in land surface 

models (Schenk and Jackson, 2002). Figure 5.6 shows the spatial distribution of soil water 

content at field capacity for W3RA-LUM soil storages.  
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Figure 5.6 Spatial distribution of water storage capacity at field capacity for (a) the top (S0FC), (b) 
shallow (SSFC) and (c) deep (SDFC) soil layers. 

The resulting map shows deep storage capacity in areas characterised by dry and wet cycles 

(e.g. Brazil, the Sahel, Northern Australia). This is consistent with observed rooting depths of 

trees in such water-limited environments. In fact, there are cases for which much deeper rooting 

depths have been reported in these areas (see Canadell et al., 1996), although soil water 

content may be modulated and concentrated in shallower soils horizons by hydraulic lift under 

these conditions (Burgess et al., 1998). 

5.3.1.4 Groundwater discharge (Qg) 

W3RA-LUM uses a one-parameter linear reservoir to simulate groundwater discharge (Qg): 

( )[ ] ggg SKQ −−= exp1
,
         5-20 
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where Sg is the groundwater reservoir storage (mm) and considered a state variable and Kg is 

the groundwater drainage coefficient (mm d-1). 

Parameter estimation 

Linear and non-linear reservoir (where Sg is raised by an exponent �g) model variants were 

evaluated using estimated groundwater discharge (Qg) patterns derived from baseflow 

recession data for 183 Australian catchments (Van Dijk, 2010b). In doing so, it was assumed 

that groundwater discharge was the only source of baseflow, although other sources of ‘delayed 

flow’ (Ward, 1984) may also be part of the estimated ‘baseflow’, such as slow draining soils or 

perched groundwater stores.  Using a two-parameter non-linear reservoir did not add much 

more explanatory value than the one-parameter linear reservoir whereas the derived �g were 

generally close to unity (Van Dijk, 2010b). 

Chapter 4 described in detail how the groundwater drainage coefficient Kg was estimated using 

streamflow data for 167 unregulated catchments in the (sub)tropics. The approach followed was 

similar to the one in Van Dijk (2010b). The mean Kg was 0.08 d-1 (±0.053 standard deviation) 

with a positively skewed distribution. The shortest recession half-times occurred in the driest 

catchments, and lower values in wetter catchments. A relationship that explained 49% of the 

observed variance was found with catchment humidity (H): 

6210.00580.0 −= HK g          5-21 

An analysis of a subset of geographically close catchments, showed that in these areas, 

presumably with some similarity of soils and geology, residuals of the regression could be 

explained by slope and catchment elongation. 

5.3.2 Data 

Meteorological forcing data 

Gridded meteorological data for daily precipitation (P in mm), incoming shortwave radiation 

(SWdown in Wm-2), and minimum and maximum temperature (Tmin,max in ºC) are the minimum 

requirements  to force W3RA-LUM. A literature review was conducted to assess the quality and 
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accuracy of climate forcing data (Chapter 3). In addition, a systematic evaluation of the 

performance of reanalysis or reanalysis-based precipitation data was performed against gauge-

based precipitation analyses for Australia and South and East Asia. It was found that the 

Princeton precipitation dataset (Sheffield et al., 2006) agreed better than the reanalysis data in 

terms of monthly correlation, root mean squared error and daily precipitation intensity 

frequency, and therefore its use was considered for the hydrological modelling experiments 

conducted here. Climate inputs other than precipitation, at least at the daily scale, have less 

spatial variability than precipitation. Given the bias-correction applied to the aforementioned 

meteorological variables in the Princeton database using ancillary data of reasonable quality, 

these were also considered for use in the current hydrological modelling experiments. The 

version of the dataset used here included 61 years of daily time series of P, SWdown, and Tmin,max

from 1948 to 2008. Effective air pressure (pair) was also available from Princeton and was used 

instead of the average air pressure at sea level commonly assumed for Australia (ca. 1,015 

hPa). 

Biophysical data 

The vegetation cover fractions for each HRU were estimated from the 500 m grid cell resolution 

map of tree cover as derived from MODIS reflectance data for the period 2000–2001 (Hansen 

et al., 2003). The higher resolution of this dataset compared to previous data (e.g. DeFries et 

al., 2000) enables a more accurate determination of forest extent, particularly in areas of 

fragmented forests. Each grid cell provided percentages of woody vegetation, herbaceous 

vegetation, and bare ground and also discriminated for open water surfaces. Other biophysical 

data used in the energy balance (see Van Dijk, 2010a for details) included an albedo 

climatology derived from MODIS white-sky albedo (Moody et al., 2005) (http://modis-

atmos.gsfc.nasa.gov/ALBEDO/) and a wind speed climatology (1983–1993) from NASA 

(http://eosweb.larc.nasa.gov/sse/) to compute aerodynamic conductance for the estimation of 

plant transpiration (see Appendix D.2.3).

Streamflow data 

Daily streamflow data for 1432 catchments with an area smaller than 10,000 km2 (i.e., less than 

the model’s 1° grid cell) were obtained from the Global Runoff Data Centre (GRDC, 
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http://grdc.bafg.de/) and Australian state agencies through the Water Information Research and 

Development Alliance (WIRADA), which form part of a larger global database consisting of 6192 

catchments assembled for a GEWEX4 forecasting project (e.g. Van Dijk et al., accepted). All 

stations had at least 10 years of data. Catchments with a runoff coefficient greater than 1.2 

where omitted from the analysis to account for basin size, precipitation and streamflow errors. 

This more relaxed catchment screening criteria was used because of scale differences between 

observations and the model grid cell, particularly the mismatch between catchment and grid cell 

precipitation. Catchments were also screened for the presence of flow regulation using two dam 

datasets (Lehner et al., 2008; Mulligan et al., 2009) which provided the locations of dams and 

their dam catchment areas (the latter only for the Mulligan et al. dataset). In addition, long-term 

seasonal data for 12 large basins were obtained from the Global Runoff Data Center (GRDC). 

5.3.3 Simulation and evaluation 

The W3RA-LUM model was run pan-tropically using daily Princeton climate forcing data for the 

years 1948–2008 and with the parameterisation described in previous sections. The model 

warm-up used the full 61 years of the Princeton data (1948–2008) to account for climatic 

variability, then the model was rerun using the states reached at the end of 2008. This was 

done due to the long time needed for deeper soil stores in very arid regions to reach dynamic 

equilibrium. 

Two types of model evaluation were performed: (1a) A comparison of monthly time-series of 

W3RA-LUM modelled streamflow against monthly observed streamflow for the 1461 

catchments with an area smaller than the model’s 1° grid cell. (1b) The same comparison but 

for modelled monthly streamflow from a version of W3RA (Van Dijk et al., accepted) which used 

calibrated parameters from AWRA-L version 1.0 (AWRA-L 1.0). AWRA-L 1.0 was calibrated 

against daily streamflow observations data for 160 Australian catchments, resulting in a 

substantial improvement of simulated streamflow (Viney et al., 2011).  In addition, the 

comparison also included streamflow (also at 1° cell resolution) from the four hydrological 

models (CLM, Mosaic, NOAH, and VIC) that form part of the Global Land Data Assimilation 

                                                     
4

The Global Energy and Water Cycle Experiment (GEWEX) is an integrated program of research, observations, and 
scientific activities ultimately aiming to the prediction of global and regional climate change (http://www.gewex.org).
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system (GLDAS; Rodell et al., 2004). (2) Comparison long-term seasonal modelled streamflow 

to observed long-term seasonal streamflow for 12 large (>10,0000 km2) (sub)tropical basins.  

The following agreement indicators were computed for evaluation 1a and b (1461 small 

catchments): 

• Density plots of observed and modelled average annual streamflow for all catchments, 

• the slope of the linear regression and coefficient of determination for the previous plot, 

• plots of the cumulative distribution of relative bias between modelled and observed 

streamflows and 

• plots of the cumulative distribution functions of the parametric (Pearson’s) coefficient of 

correlation between modelled and observed monthly streamflow for all stations. 

The following caveats should be considered when interpreting the results from the above 

evaluation (1a and b): 

• Scaling errors: the comparison is performed between a grid cell of 1° resolution (i.e.,

10,000 km2) and with catchment areas varying from 152–4049 km2. It follows that the 

input data, particularly precipitation (also 1° resolution) may well not be representative 

of a catchment. This uncertainty in precipitation inputs will be propagated and may have 

a strong impact on modelled streamflow. 

• Unknown river regulation: although care was taken to filter out regulated catchments 

using information on the location and catchment areas of dams, it is very difficult to 

verify other types of streamflow regulation and water extraction for various productive 

activities. 

• Possible errors in streamflow records. 

• The different forcing data used for the GLDAS models as well as differences in model 

structure can be expected to be an important factor underlying possible dissimilar 

results. 

The following agreement indicators were computed for evaluation 2 (12 large basins): 

• Observed and modelled average annual streamflows for all large basins, 
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• the coefficient of determination for the relationship between observed and modelled 

long-term seasonal streamflows, 

• the root mean squared error (RMSE) for  the observed and modelled long-term 

seasonal streamflows and 

• plots of averaged and observed long-term seasonal streamflows. 

The following caveats should be considered before interpreting the results from evaluation 2: 

• Scaling errors may be attenuated in this larger-scale comparison due to grid cell 

aggregation; however this attenuation could be partly due to compensating errors 

caused by the averaging of streamflow amounts between cells. 

• Differences in time-periods used for comparison: the GRDC long-term seasonal 

streamflows for different gauging stations correspond to different periods and are 

compared directly with no attempt of harmonisation. This is mainly because, besides 

dates of the start and end of the records, there is not enough information in the GRDC 

database to assess which data were used to compute the long-term seasonal 

streamflows. This would require the analysis of the underlying daily streamflow data. 

• Effects of river regulation: some of the basins used in the comparison were considered 

to be strongly affected by regulation (see Section 5.5) and various forms of water 

withdrawal (e.g. irrigation). This version of W3RA-LUM does not include a reservoir 

regulation model. 

• Errors due to routing may affect modelled streamflow, although this might not be very 

important for the proper prediction of long-term seasonal streamflow, differences in wet 

season peaks and recessions may occur. 

5.4 Results 

Comparison of modelled and observed streamflow in 1461 small catchments 

The density plots of modelled versus observed streamflows from 1461 small catchments in 

Figure 5.7 shows that the W3RA-LUM model underestimates streamflow for the more humid 

catchments and overestimates streamflow for the more arid catchments. It explains 63% of the 

variance in mean annual streamflow. Around 40% of W3RA-LUM mean annual modelled 
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streamflow was within ±50% of observations whereas this was around 48% for W3RA (not 

In terms of annual relative bias, cumulative distribution functions between modelled 

for all models in the comparison show that W3RA

biased than W3RA and slightly more negatively biased than CLM, whereas the other three 

GLDAS models are negatively biased (Figure 5.8a). The performance of W3RA

to that of CLM and W3RA and better than that of the other models 

R) for monthly flows. 
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Comparison of modelled and observed streamflow in 12 large basins  

Modelled long-term monthly streamflow for the grid cells covering 12 large (>10,0000 km2) 

(sub)tropical basins was averaged over the entire area draining to the GRDC gauging station 

(Table 5-3) and compared to observed streamflows. Table 5-3 summarises basin characteristics 

and evaluation results whereas Figure 5.9 shows the corresponding seasonal streamflow 

patterns. 

Table 5-3 Summary of basic characteristics and an evaluation of streamflow modelling results, 
including mean annual streamflow (Qtot), Spearman’s rank correlation coefficient (r) and the root 
mean squared error (RMSE) for 12 large tropical river basins. 

        mean Qtot (mm y-1) Monthly   

GRDC ID River Station Area (km2)* W3RA-LUM GRDC r RMSE 

1147013 Congo Kinshasa-East 3747320 34 27 0.41 11.45

1159100 Orange Vioolsdrif 866486 8 1 0.22 9.18 

2186800 Xi Jiang Wuzhou 329705 55 50 0.98 10.64 

2854300 Krishna Vijayawada 251355 45 17 0.86 30.29 

2856900 Godavari Polavaram 299320 43 27 0.96 21.57 

2964130 Chao Phraya Wat Pho Ngam 120693 40 10 0.79 35.73 

3206720 Orinoco Puente Angostura 836000 105 97 0.97 16.82 

3629000 Amazonas Obidos - Porto 4680000 83 94 0.99 11.21 

3649250 Tocantins Porto Nacional 177800 47 33 0.99 21.30 

3651900 Sao Francisco Traipu 622520 30 29 0.95 11.19

5101200 Burdekin Clare 129876 22 6 0.94 20.70 

5101300 Fitzroy Yaamba 136398 18 3 0.74 18.81 

* Upstream area reported for the GRDC station. Areas used to average simulated streamflow predicted by W3RA-LUM 
were within 10% of GRDC areas. 
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LUM modelled (blue line) and observed (green line) 
streamflow for 12 large (>10,000 km2) (sub) tropical basins. 

seasonal streamflow patterns simulated by W3RA agree reasonably well 

, indicating that the flow dependence on precipitat

LUM modelled (blue line) and observed (green line) long-term seasonal 

agree reasonably well with 

, indicating that the flow dependence on precipitation is appropriately 
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represented, but magnitudes differ particularly during the wet period in the more arid basins 

(e.g. Burdekin, Fitzroy). Except for the Orinoco and the Amazon, modelled streamflow was 

higher than observed. Generally, modelled streamflow showed more variability than observed 

streamflow whereas the onset of the wet period and the annual streamflow peak occurred 

earlier than was observed. 

5.5 Discussion 

The results indicate that streamflow simulated with W3RA-LUM has a reasonable performance 

compared to observations and outputs obtained with various other hydrological models. 

Although the estimated magnitudes are different, the obtained correlations for monthly flows 

suggest that the model is capturing the seasonal patterns of streamflow. The potential causes 

for the discrepancies between measured and modelled streamflow were covered in the caveats 

listed in the methodology (Section 5.5.3) and apply both to the present and other global 

hydrological models. Most global hydrological models, even calibrated ones, overestimate 

runoff in arid and semi-arid catchments (e.g. Widén-Nilsson et al., 2007 and references therein). 

Besides river regulation and other withdrawals, some models do not simulate the various 

processes that may result in substantial internal losses in arid and semi-arid basins, such as 

open water evaporation and evaporation from riparian and irrigated areas (Widén-Nilsson et al., 

2007). 

The model inter-comparison (Figure 5.8) highlighted the reasonable performance of W3RA-

LUM. The model’s estimates were better than those obtained with most other models used in 

the comparison in terms of monthly correlation, although positive bias is evident. Monthly 

streamflow simulations by the calibrated W3RA model showed better agreement with observed 

streamflow in terms of bias and correlation although this improvement came at a cost. The aim 

of the calibrated version was to better reproduce observed streamflow but this exerted and 

undue influence on other hydrological processes. For example, the calibrated parameters 

resulted in soil evaporation estimates that were substantially greater than in the (non-calibrated) 

version W3RA-LUM. The model’s structure prevents unsustainable soil water withdrawal (i.e., 

does not permit negative soil moistures to develop), and as a consequence there must be a 

compensation of water withdrawal by vegetation which is affected by an unrealistic change in 
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the factors that control evapotranspiration such as vegetation leaf area index (Neil Viney; 

CSIRO, pers. comm.). 

Seasonal streamflow patterns for large river basins were also more or less captured by the 

model (with few exceptions). In some of the examined basins, river regulation is undoubtedly an 

important factor for the obtained differences between modelled and observed streamflow (Table 

5-3), with large dams located along the main river stem in many systems (Figure 5.10). Of all 

the basins used in this analysis, the Amazonas/Orinoco and the Congo were considered to be 

the least affected by regulation or irrigation withdrawals (Nilsson et al., 2005), although 

averaging between grid cells may be partly responsible for the observed good agreement. As 

an example of a river basin that is heavily affected by regulation, the Oranje river (Figure 5.10a), 

runs through a marked precipitation gradient. There are five dams situated along the main river 

stem, but there are many smaller ones in the basin’s runoff-producing upland subcatchments 

(Lehner et. al., 2008, not shown). Losses due to irrigation withdrawals, open water evaporation 

and evapotranspiration from riparian vegetation along the river’s course in the arid 

Namib/Kalahari Desert also contribute to the marked differences between observed and 

modelled streamflow. In the case of the Congo, other global models specifically used for 

streamflow simulation, also overestimated and enhanced streamflow variability (Döll et al., 

2003; Widén-Nilsson et al., 2007), as again observed in the seasonal streamflow predicted by 

W3RA-LUM. This may be partly due to errors in observed streamflow. 

Regulation will not only distort modelled seasonal flow patterns, particularly in basins that 

experience long delays in the release of water, but it also controls the flow during the dry 

season. In areas strongly affected by regulation, any impacts of LUCC on dry season flows may 

well be (much) less pronounced or even irrelevant in terms of water quantity. This is more 

relevant in seasonally semi-arid areas than in humid areas, since a larger proportion of 

precipitation will be stored in reservoirs. However, for most dam systems the stored amount will 

be small relative to the total precipitation or streamflow (Mark Mulligan, King’s College London, 

pers. comm.). 
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Figure 5.10 River basin boundaries (black lines), location of dams along the main river stem 
(red dots), and location of GRDC gauging stations used in the analysis (black/yellow dots). 
Colour scale represents the mean annual precipitation according to WORLDCLIM (Hijmans et 
al., 2005). 

5.6 Summary and conclusion 

This chapter provided a detailed description of the development and implementation of the 

W3RA-LUM model for potential land use and land cover change (LUCC) scenario modelling 

framework. The Soil Conservation Service Curve Number Method (SCS-CN) was chosen to 

translate impacts of LUCC on the production of surface runoff (storm flows) as a function of soil 
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type and degree of surface degradation. The SCS-CN method is currently the only method 

available for the global application of these scenarios that has a strong empirical basis. 

The model development philosophy of W3RA-LUM, based on AWRA-L (Van Dijk, 2010a), 

strived towards a parsimonious representation of simulated hydrological processes. In addition, 

the emphasis was on utilising parameters that could be reasonably estimated a priori or that 

could be related to catchment climatic characteristics. This approach may enhance model 

performance when applied in ungauged catchments. 

A background review highlighted the capabilities of AWRA-L to capture the hydrological impacts 

of vegetation dynamics and change, and to reproduce patterns and estimates of actual 

evapotranspiration for a variety of Australian environments. These capabilities were not 

evaluated separately for W3RA-LUM. However, the processes associated with vegetation 

dynamics (including the corresponding model structure and parameter values) were largely 

identical and thus these capabilities should remain similar. More tests are to be conducted in 

Chapter 6 to further elucidate W3RA-LUM’s capability to represent the effects of LUCC. 

To use the SCS-CN method within W3RA-LUM, various indicators of land cover and soil surface 

condition had to be computed globally. A method to obtain curve numbers (CNs) pan-tropically 

was devised and adjusted to represent the characteristics of tropical soils. The resulting CN 

values were within design CNs reported for various tropical sites and elsewhere. 

An evaluation of modelled against observed streamflow was performed for 1411 catchments 

with an area much less than the grid cell scale of the modelling (10,000 km2), as well as for 12 

large (>10,000 km2) (sub)tropical river basins. The results indicate that W3RA-LUM shows a 

reasonable performance compared to observations and, especially, other hydrological model, 

particularly in terms of capturing monthly flows and seasonal patterns.  

Besides model structure parsimony, uncertainty in parameter values, scale factors (contrasts 

between catchment and grid cell sizes), and errors in climate and streamflow data, there are 

various anthropogenic influences on streamflow that are difficult to quantify (notably river 

regulation and water withdrawals) and have an unknown influence on model performance. 

Based on the present findings the following scenario modelling recommendations are made: 
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• Model outputs are best interpreted as local fluxes in catchments having a size up to the 

model’s grid resolution. 

• At this scale and for larger aggregations, the unknown influence of river regulation on 

model outputs needs to be quantified. 

• Due to uncertainty in model outputs and bias, results should be interpreted in 

geographically relative rather absolute terms. 

Further testing is required to assess the capabilities of W3RA-LUM to represent the 

hydrological effects of vegetation dynamics and LUCC. 



Chapter 6 Modelling the pan-tropical impact of LUCC and 

surface degradation on dry season flows and comparison 

with empirical observations at sites across the tropics 
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6.1 Introduction 

Land use and land cover change (LUCC), deforestation in particular, have a direct effect on 

hydrology through changes in the partition of rainfall into water that is either evaporated or runs-

off. LUCC is frequently accompanied by changes in surface infiltration characteristics (Lal, 

1996; Elsenbeer et al., 1999; Ilstedt et al., 2007). At the catchment scale, these changes can 

cause a decrease or an increase in baseflow, depending on the trade-off between the 

associated changes in vegetation water use (the ‘pump’ effect) and infiltration (the ‘sponge 

effect’; Bruijnzeel, 2004). The so-called soil ‘sponge’ effect of forests promotes baseflow by 

enhancing infiltration rates due to the effects of high soil organic matter and a well-developed 

root network, creating abundant bioporosity (Bonell, 2005). Water that is not evaporated or 

directly lost to streams via rapid surface runoff, infiltrates and is stored in the soil or the 

groundwater system and ultimately released as baseflow. If due to LUCC the infiltration capacity 

of the soils is strongly diminished, and if prevailing precipitation intensities are greater than this 

infiltration capacity, then overland flow occurrence will be enhanced (e.g. Bonell and Williams, 

2009; Peña-Arancibia et al., 2012). The associated decrease in infiltration may cause 

reductions in soil profile moisture storage (and thus percolation), which will reduce the storage 

of groundwater and thus groundwater flows. This redistribution of water assumes additional 

importance if it takes place in catchments dominated by a seasonal precipitation regime (wet-

dry cycles). Under such conditions, infiltration and percolation feed a groundwater system, 

which in turns feeds springs that maintain the stream during the dry season. In these 

catchments, the seasonal distribution of streamflow throughout the year is more important than 

total annual water yield per se, as water availability during the dry season is both crucial to 

sustaining ecosystems and an adequate water supply for productive activities (Poff and Ward, 

1989; Bruijnzeel, 2004; Maneta et al., 2009). 

In the tropics, agricultural expansion since the 1980s – estimated at 629 million ha (FAO, 2006) 

– occurred mostly at the expense of previously undisturbed forests (Gibbs et al., 2010). The 

productivity of post-forest LUCC generally decreased because of soil degradation and/or 

conversion to less productive agro-ecosystems (DeFries and Bounoua, 2004). According to Bai 
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et al. (2008), some 23% of the terrestrial land suffers from degradation, mostly in the tropics. In 

the absence of major policy changes and technological innovations, it is estimated that 30–87 

million ha of agricultural land will have to be taken out of production due to land degradation, 

again mostly in tropical countries (Lambin and Meyfroidt, 2011), whereas another 125–416 

million ha would be needed to sustain global demand of agricultural products under future 

population and consumption projections (Meyfroidt and Lambin, 2011). Given the current 

population growth and LUCC trends, this expansion will likely take place in forested lands in 

tropical developing countries (e.g. Hartemink et al., 2008). Concurrently, there is evidence that 

more intensive farming practices have triggered new land degradation processes at large scales 

across tropical landscapes (Loker, 1994; Turkelboom et al., 2008). When more and more land is 

converted to intensively cultivated or grazed lands, the absence of adequate soil conservation 

practices is likely have an impact on soil infiltrability and therefore on dry season flows 

(Bruijnzeel, 1990; Ziegler et al., 2009). 

At the regional to global scales, modelling studies of the impact of LUCC on hydrology have 

mainly focused on the streamflow impacts induced by vegetation change through changes in 

vegetation water use (e.g. Gordon et al., 2005; Mulligan and Burke, 2005; Trabucco et al., 2008; 

Mao and Cherkauer, 2009; Mishra et al., 2010). On the other hand, only a handful of regional 

studies have focused on the importance of changes in soil physical characteristics as a result of 

LUCC in order to explain hydrologic change (e.g. Mahé et al., 2005; Beck et al., 2013). 

Ascertaining the full pan-tropical impacts of LUCC – i.e., including both vegetation and soil 

changes – on dry season flows is the main aim of this chapter. This aim (cf. Chapter 1), 

incorporates the following specific objectives: (i) to define reference hydrological conditions 

under natural forest conditions; (ii) to evaluate where tropical LUCC can be expected to have 

the greatest impacts on dry season flows; and based on corresponding changes in 

evapotranspiration and infiltration (iii) to assess potential areas for land rehabilitation and 

regeneration of hydrological services in degraded areas through reforestation. 
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Hydrological modelling with W3RA-LUM and three maps depicting (a) potential forest cover, (b) 

current and (c) future forest cover were used to attain these objectives. To make W3RA-LUM 

amenable to this type of LUCC scenario modelling, the model’s structure and parameterisation 

were modified as described in Chapter 5.  Besides changes in land cover that directly affect 

evapotranspiration (AET), the new model structure (akin to the Soil Conservation Service Curve 

Number Method; USDA, 1986) permits the modification of those soil parameters that affect 

surface infiltration characteristics (see Section 5.3.1.1 for details).  

The respective hypotheses that were advanced to address the above objectives are 

represented by the following four situations (see also Figure 1.3, Chapter 1): 

(I) In situation A, deforestation associated with small or no changes in surface 

infiltration characteristics (in the case of low impact logging, soil conservation 

measures, low rainfall erosivity, stable soil aggregates or a combination thereof; cf. 

Edwards, 1979) will invariably lead to an increase of dry season flows, due to the 

smaller water use and interception of the grasses and crops replacing the forest. 

(II) In situation B, deforestation (loss of the ‘pump’ effect) associated with 

negative changes in surface infiltration characteristics (loss of the ‘sponge’ effect 

due to soil compaction, logging and/or mechanized agriculture or a combination 

thereof) can either decrease or increase dry season flows, depending on the trade-

off between the associated changes in vegetation water use and infiltration, 

respectively. 

(III) In situation C, forestation accompanied by little changes in surface infiltration 

characteristics will invariably lead to a decrease of dry season flows, due to the 

larger water use and interception of the forests replacing grasses and crops. 

(IV) In situation D, forestation associated with negative changes in surface 

infiltration characteristics (e.g., due to the poor soil building capacity of the planted 

species or repeated surface disturbance during forest maturation in the form of 
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litter removal, understory harvesting, or grazing; cf. Ghimire et al., 2013) will 

invariably lead to a decrease in dry season low flows due to the higher water use 

and rainfall interception losses of the forest vegetation, i.e., the forest acts 

predominantly as a ‘pump'. Conversely, if surface infiltration characteristics are 

positive (e.g., the development over time of a layer of organic matter that enhances 

moisture retention and a root network that enhances infiltration; cf. Ghimire et al., 

2013), dry season flows can either decrease or increase again depending on the 

trade-off between the associated changes in vegetation water use and infiltration, 

respectively. 

Two types of analyses are conducted here to test these hypotheses: (1) vegetation water use 

and infiltration changes are used in a pan-tropical sensitivity analysis to determine the impacts 

of LUCC on evapotranspiration and streamflow. This sensitivity analysis is also conducted at 

sites for which there is published observational evidence of changes in dry season flows due to 

LUCC. (2) Pan-tropical ‘what if’ modelling scenarios are used to assess the historical and future 

impacts of LUCC.  Spatial maps are derived in (1) and (2) to identify ‘hotspots’ in which LUCC 

may have important impacts on dry season flows. 

This chapter is organised as follows. The next section describes: (a) the global maps used for 

scenario modelling; (b) the approach for the sensitivity analysis; (c) the approach for the ‘what if’ 

scenarios and; (d) a description of the indicators used to assess LUCC impacts on streamflow. 

Subsequently, results are presented for (b) and (c), followed by discussion and conclusion. 

6.2 Methodology 

6.2.1 LUCC maps 

Three global forest cover maps resampled to 1° grid cell resolution and representing different 

epochs were used in scenario modelling: (1) potential or undisturbed past forest cover, (2) 

current forest cover and (3) future forest cover. The three maps were used to determine (a) the 

forest cover loss from undisturbed to current conditions and (b) the projected forest cover loss, 
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from current to future forest cover based on currently observed trends. Each of the maps is 

discussed briefly below. 

Potential forest cover (B98)

Billington et al. (1998), hereafter referred to as B98, compiled an original forest cover map from 

various regional maps in order to calculate total original forest loss. The map shows the extent 

of global forest cover before large pre-agricultural human impact (i.e., roughly prior to 1500 

A.D.). Billington et al. (1998) estimates suggest that about 47% of the land surface (or 6.2 billion 

ha) was covered with forests. Although humans managed forest before agriculture, most of the 

forest loss in the tropics may have occurred in the last two centuries (Shvidenko et al., 2005). 

The original forest map used here was amended to include areas not classified as forests but 

that are currently under forest cover today (see Mulligan, 2010 for details). 

Current forest cover (H03) 

The current forest cover map, hereafter referred to as H03, was estimated from the 500 m grid 

cell resolution tree cover derived from MODIS reflectance data for the period 2000–2001 

(Hansen et al., 2003). 

Future forest cover (DNP06) 

The future forest cover map developed by De Noblet-Ducoudré and Peterschmitt (2006), 

hereafter referred to as DNP06, was derived from the IMAGE (Integrated Model to Assess the 

Global Environment) model (Alcamo et al., 1998). IMAGE simulates LUCC in each region as 

driven by demands for food, timber and biofuels, in addition to changes in climate. The land use 

change scenarios were used in the IPCC Third Assessment Report on Climate Change (IPCC, 

2001).  The scenario used here (A1b) corresponds to moderate demand forces and represents 

a conservative estimate of future LUCC (e.g. DeFries and Bounoua, 2004). The grid cell 

resolution is 0.5°, while the temporal resolution is every 10 years from 1990 to 2100 and 

showing changes in crop fraction in each 0.5° grid cell. The year 2100 was used here to 

represent future forest cover. 
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6.2.2 Sensitivity analysis 

Sensitivity analysis for selected sites 

This analysis, similar to the one conducted by Mao and Cherkauer (2009), was performed to 

understand the sensitivity of hydrologic responses to cover type and soil conditions and to 

compare these with documented cases of impacts of LUCC on dry season flows introduced in 

Chapter 1 and 2. Firstly, W3RA-LUM simulations were run in multiple grid cells for different 

combinations of forest cover percentage and associated soil conditions (SC) in several tropical 

locations for which previous observations are available. A list of approximate locations and 

climatic characteristics is presented in Table 6-1. Some relevant details of the LUCC impacts on 

hydrology at each site are provided below. 

Table 6-1 Approximate location of grid cells used in sensitivity analysis and associated climatic 
characteristics including: mean annual precipitation (MAP), mean annual potential 
evapotranspiration (PET) and precipitation seasonality index (SI) for the years 1948–2008.  
Climatic characteristics were computed from the Princeton climate dataset (Sheffield et al., 
2006). 

Location MAP PET SI* 

Lat Long (mm y-1) (mm y-1) Main reference 
Upper Konto 
(Indonesia) 7.52°S 112.24°E 1964 1526 0.65 

Rijsdijk and 
Bruijnzeel (1991) 

Babati (Tanzania) 4.15 °S 35.46°E 712 2075 0.87 
Sandström  
(1995)  

Tocantins (Brazil) 11.05°S 48.25°W 1503 1911 0.82 Costa et al. (2003) 
Upper Mahaweli 
(Sri Lanka) 7.12 °N 80.40°E 1878 2033 0.37 Bruijnzeel (2004) 

* SI indicates the intra-annual seasonality of precipitation. It varies from zero (all months with the same precipitation) to 
1.83 (all precipitation occurring in one month): values <0.19 indicate very equal precipitation, whereas values between 
0.20 and 0.99 indicate a seasonal regime and values >1 a short wet season. 

In the upper Konto catchment in East Java, 33% of the original forest was replaced by rainfed 

cropping; the subsequent increase in sealed surfaces such as roads and settlements reduced 

the infiltration opportunities in those areas (Rijsdijk and Bruijnzeel, 1991; Rijsdijk et al., 2007). 

The excess water associated with reduced evapotranspiration following forest clearing, did not 

override the loss of soil and groundwater recharge due to diminished infiltration, thereby, 

changing the seasonal distribution of streamflow and reducing dry season flows. 
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Sandström (1995) established that the observed increase in peak flows in sub-humid Babati 

(northern Tanzania) since mid-1940s was caused by accelerated forest clearance and not 

climatic variability. The loss of bioporosity due to precipitation impact on exposed soil surfaces 

and human-induced compaction was deemed key to the reduced surface infiltration rates. 

Costa et al. (2003) analysed a 50-year long time series of streamflow for the large (175,360 

km2) Tocantins Basin in Amazonia, separating the record into a period with relatively little LUCC 

(1949–1968), and a period during which 49% percent of the catchment was cleared for 

agriculture and pasture (1979–1998). Although precipitation did not change significantly over 

the entire period, the results indicated that the mean annual streamflow increased by 24% and 

the wet season peak occurred one month earlier (see Figure 6 in Costa et al., 2003). The 

increase was ascribed to a reduction in evapotranspiration and infiltration and a concurrent 

increase in streamflow.  

Another example of decreased dry season flows was observed in the 1,100 km2 upper 

Mahaweli catchment in Sri Lanka, which was ascribed to conversion of tea plantations to annual 

cropping and home gardens, without appropriate soil conservation measures (Madduma 

Bandara and Kurupuarachchi (1988) in Bruijnzeel, 2004). Precipitation and streamflow time-

series for the 1940–1980 period showed that, although there was no significant change in 

precipitation, there was an overall increase in wet season flows and a slight decrease in dry 

season flows. 

Three different sensitivity simulations with W3RA-LUM were conducted for each of these four 

locations: (i) sensitivity to changes in forest cover percentage, (ii) sensitivity to changes in soil 

condition (SC), and (iii) sensitivity to changes in both forest cover and SC. Forest cover was 

assumed to be either 0% or 100%, whereas the soil parameters were varied according to forest 

presence or absence. Runoff Curve Numbers for the two forest cover percentages were 

computed by supplanting the dominant forest type (according to the UMD Global Land Cover 

Classification, see Section 5.3.1.2) with grasslands and vice versa. It was also assumed that in 

the case of a change in SC, any decrease in forest cover was associated with a change from 

good to poor hydrologic SC (cf. Table 5-1), thus depicting the most extreme case of soil 

disturbance and vice versa for increases in forest cover. Subsequently, the simulations were run 
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for each location and parameterisation using daily Princeton precipitation data for the years 

1948–2008 as forcing (Sheffield et al., 2006). Long-term intra-annual plots of streamflow were 

used to interpret the results.  

In summary, the following simulations were run: (1) 100% forest cover (100FC), (2) 0% forest 

cover (i.e., 100% grass cover, 0FC) and no associated soil change, (3) 100% forest cover and 

maximum negative change in soil conditions (i.e., 100% forest cover + SC or 100FCSC), the 

most hypothetical of the four simulations (i.e., rarely occurs in practice), to separate the impact 

of a change in infiltration characteristics from that of altered vegetation water use, and (4) 0% 

forest cover and maximum negative change in soil conditions (i.e., 0% forest cover + SC or 

0FCSC). 

Pan-tropical sensitivity 

Sensitivity simulations were conducted at the pan-tropical scale using model runs 

corresponding to the 100FC, 0FC and 0FCSC scenarios. The 100% forest percentage cover 

was assigned to all grid cells containing �5% forest cover according to the B98 map. The 5% 

threshold was chosen to filter some semi-desert areas from the analysis. Spatial maps of 

indicators of streamflow regime alterations (see Section 6.2.4) were used to interpret the 

results. 

6.2.3 ‘What if’ scenarios 

The ‘what if’ scenarios were used to identify ‘hotspots’ in which LUCC may have impacted, or 

may impact dry season flows. Three simulations were conducted using the three land cover 

maps described in Section 6.2.1 and associated runoff Curve Numbers computed as described 

in Section 5.3.1.2. As in the sensitivity analysis, runoff Curve Numbers for the forest cover 

percentages pertaining to each forest cover map were computed by supplanting the dominant 

forest type with grasslands. In addition, any decrease in forest cover was associated with a 

change from good to poor hydrologic SC. Subsequently, spatial maps of indicators of 

streamflow regime alterations were used to interpret the results. 



6-9 

To visualise the extent of LUCC for historical and future forest cover loss (Figure 6.1a and b), 

losses were estimated by subtracting the fraction corresponding to the expansion in other land 

uses (at the expense of forest) in each 1° grid cell. To derive the future forest cover map, it was 

assumed that already existing grassland/cropland will still be used as such in the future and that 

there is only continued expansion of agricultural land. In the tropics, projected decreases in the 

area under agriculture were limited to a few small areas in Southeast Asia (i.e. elsewhere the 

agricultural land area increased). 

Figure 6.1 Scenarios of percentage forest cover loss (%FCL): (a) % FCL between the potential 
forest cover (B98) and the current forest cover (H03), i.e., B98-H03. (b) %FCL between the 
present and a future forest cover (i.e., in 2100) due to continued agricultural expansion 
(DNP06), i.e., H03-DNP06. 

The forest cover loss from undisturbed to current conditions shows a large reduction (> 40%) in 

the Andes, Central America, south-eastern Brazil, Sub-Saharan and southern Africa, most of 
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Asia and part of Australia (Figure 6.1a). In some cases this loss may be realistic (e.g. expansion 

of croplands in India, Southeast Asia, China and south-eastern Brazil; see Goldewijk and 

Ramankutty, 2004), in others this may be the result of the coarse resolution of the potential 

forest cover map. In the case of future forest cover loss, results show the maximum decrease in 

remote and undisturbed forest lands to be less than 20% in areas of central Amazonia, eastern 

Congo, Borneo, Sulawesi and Papua New Guinea. In other remote and undisturbed lands the 

decrease is generally less than 7% (Figure 6.1b). Conversely, the decrease in forest cover for 

grid cells with greater than 30% but less than 60% current forest cover under original conditions 

(i.e., less dense types of forest or woodlands in climates with seasonal rainfall) is more 

intensive, more widespread and occurs for different types of forests. 

It is noted that the proximity of these more seasonal and less dense forests to densely 

populated areas (representing higher extraction pressures) and their often rich agricultural soils 

make them more vulnerable to deforestation than humid forests (e.g. Songer et al., 2009). 

6.2.4 Indicators of streamflow regime alterations 

Three indicators based on monthly streamflow data were computed to locate grid cells for which 

streamflow regime has been altered by LUCC. The indicators were taken (and partly modified) 

from Döll et al. (2009). The following indicators were computed: 

• The indicator for the effect of LUCC on long-term mean annual streamflow (ILTA) 

computes the relative difference in long-term mean annual streamflows before and after 

LUCC. 

• The indicator for the effect of LUCC on streamflow seasonal amplitude (ISA) computes 

the relative difference in long-term mean seasonal amplitude (month with highest 

streamflow minus the month with the lowest streamflow) before and after LUCC. 

• The indicator for the effect of LUCC on low flows (ILF) computes the number of months 

with decreased total flows out of four months with low flows, after LUCC compared to 

prior conditions. A period of four months of low flows was selected since in many areas 

the dry season lasts longer (Foster and Chilton, 1993). 
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Due to the uncertainty in model input data (particularly rainfall), predicted streamflow outputs 

and overall model bias, the resulting indicators are interpreted mostly in relative rather than 

absolute terms (see Section 5.6). In addition, due to the coarse scale of the analysis, the 

derived indicator values should be considered as first estimates only and used mainly to identify 

‘hotspots’ of hydrological change after LUCC. 

6.3 Results 

6.3.1 Sensitivity analysis 

Sensitivity analysis for selected sites 

Three of the four study sites used in the sensitivity analysis have a strong seasonal precipitation 

(P) regime, with the wet season peaking in December-March, and a distinctive dry season 

extending several months during the May-October period (Figure 6.2). The exception is the 

upper Mahaweli basin in monsoonal Sri Lanka which has a bimodal precipitation regime 

peaking around April and November. In the upper Konto and Tocantins basins, the mean ratio 

of monthly P to the corresponding number of days with P (MPDR, a proxy of rainfall intensity) 

was <15 mm mo-1 per rain day in most months (Figure 6.2 and c), whereas it was >15 in the 

Mahaweli basin (Figure 6.2d). Relative to the amounts of monthly P, the sub-humid Babati site 

(Tanzania) had the highest MPDR (Figure 6.2b). 

The mean annual results of the two most extreme simulations (i.e., 100FC and 0FCSC) are 

summarised in Table 6-2 and show that generally the higher long-term evapotranspiration ( totE ) 

associated with the 100FC simulations results in a reduction in streamflow ( totQ ).  
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Figure 6.2 Mean monthly rainfall (P in mm, grey bars) and the mean ratio of monthly rainfall 
amount to the number of days with precipitation (MPDR, black line) for the years 1948–2008 as 
computed from the Princeton climate dataset (Sheffield et al., 2006) for the four catchments 
chosen for the sensitivity analysis. 

The differences in totE range from 12 to 38%, whereas the range is -60– -27% in totQ . On the 

other hand, the higher infiltration in the 100FC simulation shows a more commensurate 

contribution of baseflow ( gQ ) and storm flow ( RQ ) to totQ in the Tocantins (44 and 66% for RQ

and gQ , respectively) and upper Mahaweli (48 and 62% for RQ and gQ , respectively) sites. 

Conversely, in the 0FCSC simulation, totQ is dominated by RQ , with much of the excess totQ

due to reduced totE being translated into RQ  (61 and 74% in the Tocantins and upper 

Mahaweli, respectively) rather than gQ .  

� �

� �
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Table 6-2 Mean annual streamflow ( totQ ), storm flow ( RQ ), baseflow ( gQ ) and 

evapotranspiration ( totE ) with corresponding differences (prefix �) for two simulation scenarios, 

i.e., 100% forest cover (100FC, in bold) and the completely deforested case with poor soil 
hydrological conditions (0FCSC, in italics) (see Section 6.2.2). Numbers in brackets correspond 
to the differences expressed in percentages. 

          

  Tocantins Mahaweli Upper Konto Babati 

totQ  (mm y-1) 230 509 672 50 

518 884 933 127 

� totQ -288 (-55) -375 (-42) -261 (-27) -77 (-60) 

RQ  (mm y-1) 102 248 166 42 

316 655 422 116 

� RQ -214 (-67) -407 (-62) -256 (-60) -74 (-63) 

gQ  (mm y-1) 
129 261 507 8 

202 229 511 10 

� gQ -73 (-36) 32 (14) -4 (-1) -2 (-20) 

totE  (mm y-1) 1273 1370 1292 662 

985 993 1031 586 

� totE 288 (29) 377 (38) 261 (25) 76 (12) 

Streamflow in the upper Konto catchment is dominated by baseflow gQ in the 100FC simulation 

(66%) whereas in the 0FCSC simulation its contribution is reduced to 25%. Conversely, totQ in 

the Babati catchment is dominated by storm flow RQ  (84 and 91% for the 100FC and 0FCSC 

simulations, respectively). Proportionally speaking, the differences in baseflow associated with 

the two scenarios are the main underlying cause of the predicted overall changes in totQ , since 

the increase in storm flow in the 0FCSC simulation is around 60% in all catchments. Despite the 

increase in storm flow in all sites, the absolute difference in baseflow � gQ for the upper Konto 

and Babati were very small. In these two cases, the mean annual increase in infiltration 

converted to gQ  compensated the increase in totE . 
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Looking at seasonal patterns for the upper Konto associated with the different land covers and 

soil hydrologic conditions, Etot and Qtot behave similarly in simulations with the same land cover, 

regardless of contrasts in soil conditions (Figure 6.3). Etot responses to forest removal (with or 

without soil deterioration) show a decline during the dry season that is both delayed and 

deepened compared to the 100FC scenario (Figure 6.3b). The latter indicates lowered soil 

water availability in the shallow soil during this time of the year causing a further reduction into 

dry season Etot by the grassland. A (very) slight reduction in Qtot is observed during the dry 

months of June-August in the 0FCSC scenario compared to the 100FC case (Figure 6.3a). 

Nonetheless, changes in SC redistributed the components of Qtot, with simulations with a 

(negative) change in SC having higher QR and lower Qg, respectively (Figure 6.3c and d). Wet 

season flows (Qtot) are enhanced in both simulations with 0FC whereas the seasonal peak 

occurs one month earlier (Figure 6.3a). 

Figure 6.3 Mean monthly simulated (a) streamflow (Qtot), (b) evapotranspiration (Etot), (c) storm 
flow (QR) and (d) baseflow (Qg) for 1948–2008 for the upper Konto catchment. Each coloured 
line represents simulations depicting different vegetation and changes in soil conditions; the 
term SC in the legend refers to changes in soil conditions limiting infiltrability: 100% Forest 
(100FC, green solid line), 0% Forest (0FC, orange dashed line), 100% Forest +SC (100FCSC, 
yellow line) and 0% Forest + SC (0FCSC, black dotted line). 

� �

� �



6-15 

In the sub-humid Babati catchment, changed soil conditions are more important than 

differences in vegetation cover per se (i.e., Etot). The two simulations with negative changes in 

SC have higher wet season flows than simulations without SC, regardless of forest presence or 

absence (Figure 6.4a). Etot almost stops in the dry season in the 0FC simulations (Figure 6.4b) 

and this may be related to insufficient water storage in the shallow soil compartment under the 

prevailing sub-humid conditions. Higher Etot is simulated for grass than for forest during the wet 

season. Simulations with 100FC sustain Etot during the dry season (Figure 6.4b). Most of the 

changes in Qtot result from changes in QR, with a negligible effect of changes in Qg (Figure 6.4c 

and d). 

Figure 6.4 Idem as in Figure 6.3 but for the Babati catchment. 

Vegetation cover is relatively more important than soil conditions in the Tocantins basin when it 

comes to explaining changes in seasonal streamflow patterns associated with the different 

scenarios (Figure 6.5). Patterns of Etot in the Tocantins are similar to those in Babati, although 

there is sufficient water storage in the shallow soil layer to sustain some Etot for the grassland 

� �

� �
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during the dry season. The amount of Qg appears to be modulated by SC (Figure 6.5a) since 

seasonal peaks occurring one month earlier are observed in the simulations with changed SC. 

The latter results in a very slight reduction of initial dry season flows. The seasonal pattern for 

QR, naturally, varies according to rainfall (Figure 6.2c), whereas in scenarios with no negative 

change in SC it seems that soils ‘carry over’ water from the wet to the dry season, maintaining a 

delayed streamflow in the form of Qg (Figure 6.5d).  

Figure 6.5 Idem as in Figure 6.3 but for the Tocantins basin. 

In the humid upper Mahaweli catchment, the higher Etot associated with the 100FC simulations 

(Figure 6.6b) results in generally less Qtot throughout most of the year than in the simulations 

with 0FC (Figure 6.6b). The recession of Qtot appears to be controlled by SC, with faster 

recessions observed in the simulations involving changed SC. Simulations with 0FC also have 

higher flows during the short dry season. The seasonal peak in flows is one month ahead 

(November vs. December) in the simulations with changed SC (Figure 6.6a). 

� �

� �
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Figure 6.6 Idem as in Figure 6.3 but for the Mahaweli catchment. 

Pan-tropical sensitivity analysis 

Expressed as the percentage difference in long-term mean annual streamflow associated with 

completely forested (100FC) and deforested conditions (0FC) shows the long-term mean 

annual streamflow ( totQ ) to increase pan-tropically after the removal of forests. This increase is 

18% on average if only the vegetation cover changes, whereas it amounts to 26% if vegetation 

cover changes alongside soil conditions. Pan-tropical maps of the spatial variability in response 

to deforestation show that these changes vary geographically both for the 100FC and 0FC 

comparison (Figure 6.7a) and the 100FC and 0FCSC comparison (Figure 6.7b). In the former 

case, substantial increases in totQ (>30%) are observed in areas with high rainfall but also in 

some areas with seasonal rainfall (e.g. the Brazilian cerrado zone, Madagascar, Peninsular 

Southeast Asia, Sub-Saharan East Africa, northern Australia, north-east and west India, 

western Mexico), whereas the increases are smaller in more arid and semi-arid areas (eastern 

Brazil, southern Madagascar, inland Australia, central India, northern Mexico). On the other 

� �

� �
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hand, a similarly substantial increase is also observed in the more arid areas for the 

deforestation cum soil degradation case (100FC-0FCSC) (Figure 6.7b).

Figure 6.7 Relative change in long-term mean annual streamflow (ILTA) under LUCC impact 
and undisturbed conditions, expressed as a percentage of the long-term mean annual 
streamflow under undisturbed conditions for (a) deforestation only (100FC-0FC); (b) 
deforestation plus soil degradation (100FC-0FCSC). 

The relative change in long-term mean annual streamflow (ILTA) are better illustrated in the 

form of cumulative percentage plots, where catchment humidity (HI=P/PET with PET being 

potential evapotranspiration) appears to be a good indicator of ILTA (Figure 6.8a and b). 

Differences in ILTA for 100FC-0FC (Figure 6.8a) and 100FC-0FCSC (Figure 6.8b) are more 

pronounced in more water-limited areas (HI<0.9) and less in energy-limited areas (HI>1.3). 

Similarly, in terms of the seasonality index (SI; indicates the intra-annual seasonality of 

precipitation, see Table 6-1 for an explanation), ILTA increases especially in more seasonal 

areas (SI>0.6) after forest removal (Figure 6.8c). On the other hand, ILTA values do not vary 
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much in the case of forest removal followed by soil degradation, indicating smaller post-forest 

water use possibly as a consequence of reduced infiltrability and enhanced QR (Figure 6.8d). 

  

   

Figure 6.8 Cumulative percentage relative change change in long-term mean annual streamflow 
(ILTA) by humidity index (HI) for (a) 100FC-0FC; (b) 100FC-0FCSC. Colours represent different 
ranges in the percentage increase in ILTA, (c) and (d) idem but for the seasonality index (SI). 

The patterns obtained for the differences in seasonal amplitude indicator (ISA) between the 

respective scenarios are similar to those found for ILTA, suggesting that most of the increase in 

totQ occurs during the wet season, particularly for the aforementioned arid and semi-arid areas 

in the 100FC-0FCSC scenario (Figure 6.9b). There are some exceptions, however. For 

example, not much change (0–1%) is found in some areas in the Congo and central South 

America in either scenario (Figure 6.9). In these humid areas, high rainfall may well translate 

into sufficient water storage in the shallow and deep soil storages. Because of the resulting 

commensurate increase in all months, ISA changes may not be as marked (although ILTA may 

increase). Pan-tropically, the average change in ISA is 11% for the deforestation scenario and 

20% for the deforestation plus soil degradation scenario. 

� �

� �
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Figure 6.9 Difference between long-term mean seasonal amplitude (ISA) under LUCC impacts 
and prior conditions, expressed as a percentage of the amplitude under prior conditions for (a) 
100FC-0FC; and (b) 100FC-0FCSC. See text for explanation. 

The results for the third indicator of streamflow change, i.e., the number of months with 

decreased Qtot during the four-month low flow season (ILF), are only shown for the 100FC-

0FCSC comparison (Figure 6.10). Results for the 100FC-0FC comparison were trivial and 

showed all months in the 0FC case to have higher Qtot as would be expected on the basis of the 

corresponding reduction in Etot. In areas with ILF>0, different combinations of climatic and/or 

physical characteristics captured by the model (i.e., soil water holding capacity, vegetation type, 

surface infiltration conditions) are potentially important for the modelled LUCC impacts on dry 

season flows. The simulation results show areas with a reduction in Qtot for some of the driest 

months, despite the decreases in Etot associated with the conversion from forest to grassland, 

as also simulated before for some low flow months in the upper Konto or Tocantins catchments. 

As such, the surface degradation effect appears to override the evaporation effect for some of 

the driest months in these cases. Figure 6.10 shows several clusters of ILF>0, notably in 

Central America, northern South America, the Andes, Bolivia, Brazil, the Caribbean, Congo, 
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Gabon, Tanzania, Ethiopia, South Africa, Madagascar, India, Bangladesh, and several 

countries in Southeast Asia. 

Figure 6.10 Number of months with modelled decreases in dry season flows (ILF) out of four 
months with low flows following deforestation and surface degradation (100FC–0FCSC). See 
text for explanation. 

To shed further light on the possible causes underlying the patterns shown in Figure 6.10, the 

distributions of selected climatic and physical characteristics (including model inputs, 

parameters and state variables) of two cell sample populations were examined for the 100FC 

simulations: (i) all model grid cells (n = 3743, excluding semi-desert areas with MAP<400 mm y-

1 where dry season flows may be small or nonexistent) and (ii) all modelled grid cells with ILF>0 

(n = 704). The two populations were compared using normalised probability distribution plots 

(Figure 6.11). 

Of all the climatic and physical characteristics examined, probabilistic distributions of the mean 

humidity index (HI), potential maximum soil water storage capacity for rainfall events (Smax), soil 

water content in the shallow and deep stores (Stot), and groundwater recession coefficient (Kg) 

for the two model grid cell sample populations suggested a difference in climate type between 

the two samples, and a different way of partitioning net rainfall into surface runoff and infiltration 

(which is then evaporated or released as baseflow).
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In terms of climatic attributes, cells with ILF>0 had higher HI-values (mean 1.20 ± 0.47 standard 

deviation) than all model cells (0.70 ± 0.58 standard deviation) (Figure 6.11a). Mean annual 

precipitation (MAP) and seasonality index (SI) probability distribution functions did not differ 

much between the two samples (not shown). 

Figure 6.11 Normalised probability distribution functions (PDF) of all model grid cells (solid blue 
lines) and of all model grid cells with ILF>0 (dashed black lines) for mean annual values (1948–
2008) of (a) humidity index (HI), (b) potential maximum soil water storage capacity for rainfall 
events (Smax), (c) soil water content in the shallow and deep stores (Stot) and (d) groundwater 
recession coefficient (Kg). 

The two physical model parameters, Smax and Kg had different probabilistic distributions (Figures 

6.11b and d). The PDF of Smax in all model grid cells exhibited a greater skew than that for the 

cells with ILF>0. This was also the case for Kg; Kg for most model cells with ILF>0 was 0.06 d-1

�

�
�
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on average (corresponding to a half-time of approximately 12 days) compared to 0.11 d-1 (half-

time ca. 6 days) for all model grid cells. 

The most dissimilar PDFs were found for the state variable soil water content in the shallow and 

deep stores (Stot). A noticeably negatively skewed and bimodal probabilistic distribution was 

computed for Stot in all model cells, whereas that for the model cells with ILF>0 indicated their 

soils to remain wetter. It should be noted that cells with MAP<400 mm y-1 were excluded from 

this analysis. Hence the bimodality of the PDF for all cells cannot be completely ascribed to grid 

cells located in dry or very dry areas. A summary of cell sample statistics is given in Table 6-3. 

Table 6-3 Comparison of climatic and physical characteristics of all model grid cells with those 
of cells with ILF>0. Climatic characteristics include means and standard deviations (in brackets) 
of: mean annual precipitation (MAP), humidity index (HI) and seasonality index (SI). Physical 
characteristics include: potential maximum soil water storage capacity for rainfall events (Smax), 
soil water content in the shallow and deep stores (Stot), and the groundwater recession constant 
(Kg). 

Characteristics   All grid cells Grid cells ILF>0 

     (n=3743) (n=704)  

Climatic 

MAP (mm y-1) 1513 (±652) 1690 (�747) 

HI 0.70 (±0.58) 1.20 (±0.47) 

SI 0.63 (±0.28) 0.62 (�0.19) 

Physical 

Smax 112 (±62) 135 (�76) 

Stot =Ss+SdS0  (mm y-1) 5449 (±4586) 7531 (�3742) 

StotFC (mm) 832 (±367) 1200 (�370) 

Kg (day-1)   0.11 (±0.09) 0.06 (±0.01) 

6.3.2 ‘What if’ scenarios 

As observed earlier in the sensitivity scenario modelling, pan-tropical removal of forests in the 

two ‘what if’ scenarios (cf. Section 6.2.3) led to an increase in ILTA. ILTA increases appeared to 

be generally commensurate to percentage forest cover loss (%FCL, Figure 6.12). ISA changes 

also followed similar patterns to those shown by the sensitivity scenarios and are not shown 

here. The main concern of this experiment, however, are the results of the third indicator of 
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changes in streamflow, i.e., the number of months with decreased Qtot during the four months of 

low flows (ILF) (Figure 6.13a and b). Not surprisingly, areas with ILF>0 when comparing the 

current and undisturbed forest cover situations (i.e. B98–H03) were similar to the areas found 

during the sensitivity simulations (comparing 100FC and 0FCSC), due to the high %FCL 

associated with B98–H03. Besides the clusters already observed in Figure 6.10, new clusters 

were identified in West Africa (Benin, Guinea and Togo) and India. It should be noted that the 

percentages of forest cover in B98FC and 100FC may be different, and so will be the 

associated runoff Curve Numbers, which may go some way toward explaining some of the 

differences between Figures 6.10 and 6.13a. 

Figure 6.12 Difference between long-term mean annual streamflow (ILTA) under LUCC impacts 
and prior conditions, expressed as a percentage of long-term mean annual streamflow under 
prior conditions for (a) (B98-H03); (b) (H03-DNP06). See text for explanation. 

Similarly, clusters of ILF>0 identified in the H03-DNP06 scenario (future forest loss) roughly 

compare to those found for B98-H03, and again correspond to areas affected by relatively high 
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values of %FCL (Figure 6.13b).  However, %FCL values in some of these clusters are not as 

large as in B98-H03, which may be caused by the non-linearity of LUCC impacts on hydrology, 

as also inferred from the results obtained with the site sensitivity analysis. 

Figure 6.13 Number of months with modelled decrease in dry season flows (ILF) out of four 
months with low flows under LUCC impacts and prior conditions for (a) deforestation until 
present (B98-H03); and (b) future deforestation (H03-DNP06). See text for explanation. 

6.4 Discussion 

Sensitivity analysis for selected sites 

On a long-term mean annual basis, the higher totE  in the simulations with 100% forest cover 

resulted in a reduction in total streamflow, totQ  at all four sites under consideration. The 

inclusion of soil surface degradation impacts (through the Soil Conservation Service Curve 

Number approach) when shifting from forest to a grass cover; resulted in higher absolute 
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baseflows ( gQ ), except for the Mahaweli catchment; whereas storm flows ( RQ ) increased by 

around 60% across all sites. Despite the increase in storm flow in all sites, the absolute 

difference in baseflow (� gQ ) for the upper Konto and Babati were very small. In these two 

cases, the mean annual increase in infiltration converted into gQ  compensated the increase in

totE . 

On a seasonal basis, changes in flow patterns varied between sites, with some interesting 

dynamics pertaining to dry season flows (Figures 6.3–6.6). Changes in CN associated with poor 

soil conditions controlled infiltration and the recession of streamflow at the end of the wet 

season through an increase in monthly QR and thus faster recession; this had an impact on dry 

season flows in some catchments.  

 In the upper Konto catchment, the patterns (but not the magnitudes) of mean seasonal Qtot as 

modelled in the 100% forest cover (100FC) and 0% forest cover and negative changes in soil 

condition (i.e., 100% grass cover, 0FCSC) scenarios were similar to the ones observed by 

Rijsdijk and Bruijnzeel (1991) (see Figure 1.2, Chapter 1). The observed and modelled slight 

reduction in dry season flows in the 0FCSC scenario was ascribed to a loss of infiltration 

opportunities due to poor soil conservation practices and an increase in sealed surfaces. 

The increase in modelled peak Qtot during the wet season in the 0FCSC simulations for the 

Babati catchment is consistent with the reported increase (Sandström, 1995). Most of the 

simulated increase was due to overland flow during the wet season. The higher MPDR in 

relation to monthly P in the Babati area translated into a substantial difference in streamflow 

associated with the same land cover but different soil conditions (Figure 6.4). The loss of bio-

porosity was deemed key for the observed increase in peak flows (Sandström, 1995), which 

appeared to be the mechanism governing overland flow occurrence, rather than changes in 

vegetation cover in this sub-humid environment where the natural vegetation consists of scrub 

rather than tall forest. 

In the Tocantins river basin, the simulated patterns (although not the magnitudes) in mean 

seasonal Qtot for the 100FC and 0FCSC simulations were similar to the ones observed by Costa 
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et al. (2003) (see their Figure 6) for periods before and after LUCC, respectively. As in these 

simulations, the inferred reduction in infiltration opportunities advanced by Costa et al. (2003) 

was not great enough to produce a marked reduction in dry season flows, although there were 

changes in streamflow recession and overall redistribution of dry season flows (Figure 6.5). 

The simulation results for the upper Mahaweli catchment (Figure 6.6) did not support the slight 

decrease in dry season flows reported in Bruijnzeel (2004) that was mainly ascribed to poor soil 

conservation measures. However, in this particular case tea plantations (not forest) were 

replaced by annual cropping and home gardens. Therefore, a more pertinent comparison would 

have been that between the 0FC and 0FCSC scenarios, in which case a very slight decrease in 

streamflow during one month of the dry season was simulated (Figure 6.6a). 

The above results were site-specific and reflected the representation of various physical 

processes in the model, the specific parameter values used and the experimental design (i.e.,

forest presence versus absence). With respect to transpiration (Et), the current model version 

mainly considers the effects of soil water availability, since this most likely will have the greatest 

impact in seasonal tropical environments (Costa et al., 2010). Other factors such as energy 

availability and canopy wetness duration may play a similarly important role in more humid 

environments such as rain forests or montane cloud forests (Giambelluca et al., 2009; Costa et 

al., 2010). Some of these aspects are incorporated in the model through its interception 

evaporation (Ei) routine (cf. Van Dijk, 2010). 

Sensitivity simulations for the catchments with marked rainfall seasonality (Babati and 

Tocantins) showed higher Etot for grassland at the end of the wet season (cf. Figures 6.4b and 

6.5b). This is consistent with the idea that grasses adopt a less conservative water-use strategy 

compared to trees (Rodriguez-Iturbe et al., 2001; Rodriguez-Iturbe and Porporato, 2004). 

Observations of daily mean or maximum transpiration rates made from flux towers being similar 

or even higher for grasses and grasslands compared to trees and forests support this finding 

(Teuling et al., 2010). Results by Williams et al. (2012) using data for 167 flux tower sites 

located mostly in temperate environments suggested annual Et from grasslands was 9% higher 

than for forests. The fact that the eddy covariance method used to estimate Et is generally 

unreliable during rainfall and thus it is so for estimating Ei may partly explain the latter results. 
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However, in some shrub-dominated environments, such as Amazonian cerrado (i.e., parts of 

the Tocantins basin) and sub-humid Babati, the LAI of grasses during the wet season was 

comparable or higher than that of trees and shrubs, with soil water content in the shallow soil 

(up to 1 m) being strongly and positively correlated to grass LAI (Hoffman et al., 2005). 

In the present sensitivity simulations, Et for grass reached a minimum at the end of the dry 

season in the more water-limited environments, or stopped altogether (e.g. at the Babati site; 

Figure 6.4b). Figure 6.14 shows the soil water contents in the deep (Sd) and shallow (Ss) 

storage compartments used in the Tocantins simulations for different percentages of forest 

cover.  Water content in Ss (Figure 6.14a) was insufficient to maintain rates of dry season 

evapotranspiration for 100% grass cover (cf. Figure 6.5b). Indeed, typical cerrado vegetation 

has a grassy layer that becomes inactive during the dry season (Giambelluca et al., 2009). 

Conversely, rainfall that infiltrated during the wet season was ‘carried over’ to Sd (Figure 6.14b) 

and this modulated dry season evapotranspiration by the forest (Figure 6.5b). Negrón Juarez et 

al. (2007) concluded for a seasonal Amazonian forest site that under normal or below-normal 

dry season rainfall conditions, more than 75% of Etot is supplied by soil water below 1 m depth, 

whereas during a rainier dry season, this would be about 50%. Soil moisture found at <1 m 

depth is typically recharged by rainfall during the wet season. 

 Figure 6.14 Water contents in (a) deep (Sd) and (b) shallow (Ss) soil water storage 
compartments in the Tocantins simulations for different percentages of forest cover. 

� �



6-29 

Similar Etot and soil moisture dynamics were also observed for grasses and eucalypt woodlands 

in a savannah in the seasonal tropics of northern Australia (Hutley et al., 2010). Deep roots in 

forests are likely to become more important in maintaining high rates of Et in the dry season 

because of their ability to access deeper soil water (Nepstad et al., 1994). In an Amazonian rain 

forest, monthly Et peaked during the dry season, presumably because of the higher atmospheric 

evaporative demand in the dry season (less cloud cover) and deep roots having continued 

access to soil water (da Rocha et al., 2004). 

Model sensitivity to imposed LUCC at these sites and elsewhere will depend on additional 

factors that were not considered in the current model, including: cloud cover, rainfall intensities, 

mixed vegetation cover, topography and geology not captured by parameters in the model’s 

structure. 

Pan-tropical sensitivity analyses 

The previous site sensitivity analyses suggested that the representation of several relevant 

hydrological processes (particularly for the seasonal tropics) as well as the response of the 

model to imposed LUCC are reasonable; even if deviating in absolute terms from observations.  

Due to the many uncertainties in the forcing and land cover data, scale issues, and other 

processes that the model does not capture, the results should be considered to be an indication 

of the scale of change associated with LUCC, rather than an exact prediction of change (Coe et 

al., 2011).  

In terms of the percentage difference in the long-term mean annual streamflow indicators (ILTA) 

for forested and non-forested conditions, long-term mean annual streamflow ( totQ ) increases by 

18% on average if only vegetation cover changes and infiltration opportunities are maintained, 

whereas it increases by an additional 8% if infiltration opportunities are reduced. To a large 

extent, this additional increase occurs in more water-limited and seasonal environments, 

whereas the changes are less marked in more humid environments (Figure 6.8). Similar 

patterns were simulated for the difference in the seasonal flow amplitude indicator (ISA) which 

indicated most of the increase in totQ  may occur during the wet season. The results obtained for 

these two indicators suggested that dry season flows may well be negatively impacted by LUCC 
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in areas where the seasonal distribution of streamflow is important. In fact, 97% of the grid cells 

in which the indicator for the effect of LUCC on low flows (ILF) was <4 had a seasonal rainfall 

regime (SI>0.2), and 64% had a marked seasonal regime (SI>0.6).  

The statistics (Table 6-3) and probability distribution functions for various physical and model 

parameters derived for grid cells with ILF>0 after LUCC provided a rationale for identifying the 

characteristics of areas in which dry season flows are likely to be more sensitive to LUCC 

impacts. 

In terms of site Humidity Index (HI), 65% of the grid cells with ILF>0 had an HI>1, whereas 90% 

had an HI>0.65. The PDF for HI was also less negatively skewed for the grid cells with ILF>0 

than that for all model grid cells with MAP>400 mm y-1 (Figure 6.11a). In the case of seasonal 

climates, this surplus of P over PET occurs generally during 3–6 months of wet season. Some 

of this surplus may infiltrate (and be available for Et) or will run off, depending on the changes in 

soil infiltration characteristics associated with LUCC, and prevailing rainfall intensities. Site 

sensitivity simulations also illustrated the role of rainfall intensity and the infiltration capacity of 

soils, with higher intensities resulting in more overland flow and greater storm flow volumes 

(Figures 6.3c–6.6c). The distribution of Smax (a proxy for soil infiltrability) for grid cells with ILF>0 

was less negatively skewed that that for all model grid cells (Figure 6.11b), suggesting the 

former soils to be more capable of accommodating higher rainfall intensities. Common LUCC in 

the tropics, such as mechanised forest clearing for timber harvesting and cattle ranching, or 

intensive agriculture cause a number of disturbances (particularly loss of organic matter and 

increased compaction) to the soil surface (Alegre and Cassel, 1996; Wemple and Jones, 2003; 

Sidle et al., 2004; Grip et al., 2005; Negishi et al., 2008). The degree of soil disturbance 

determines the change in infiltration opportunities and volumetric soil moisture content. With 

respect to the role of Stot, deep soils with high water storage capacities (and by implication 

better infiltration opportunities) may also ‘carry over’ soil moisture from the wet to the dry 

season. These effects are illustrated in Figure 6.15 through the normalised probability functions 

of Smax and Stot for all model grid cells with ILF>0 in the 100FC and 0FCSC scenarios. The PDF 

for Smax is more negatively skewed in the 0FCSC scenario than in 100FC whereas the mean 

has decreased from 135 mm mo-1 in the 100FC simulation to 52 mm mo-1 in 0FCSC (Figure 
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6.15a). This translated in Stot being substantially lower (i.e. drier soils) in the 0FCSC scenario 

than in 100FC (Figure 6.15b). 

Figure 6.15 Normalised probability distribution functions (PDF) for all model grid cells with ILF>0 
for 100FC (dashed lines) and for 0FCSC (solid lines) for mean annual values (1948–2008) of 
(a) potential maximum soil water storage capacity for rainfall events (Smax), and (b) soil water 
content in the shallow and deep stores (Stot). 

The mean groundwater recession coefficient (Kg) for all grid cells with ILF>0 implied a half-time 

that was roughly twice the value for all model grid cells (i.e. ca. 12 and 6 days, respectively; cf.

Table 6-3). The equation normally used to describe rates of baseflow recession (Section 

5.3.1.4; cf. Peña Arancibia et al., 2010) corresponds to the part of the hydrograph associated 

with prolonged periods with little or no rainfall. As such, it illustrates in a general way the nature 

of the groundwater storages feeding the streamflow (Tallaksen, 1995). However, the recession 

data were limited to 167 tropical catchments and the role of deep soils and permeable regoliths 

and lithologies could not be established (Peña Arancibia et al., 2010). Deep soils and 

permeable regoliths are widely present in tropical landscapes (Chappell et al., 2007), and their 

lagging effect is expected to reduce seasonal streamflow variability as well as sustain flows 

during the dry season. In particularly porous catchments, dry season flows may contribute up to 

30% of all streamflow (see Le Maître and Colvin (2008) for an example from temperate 

southern Africa). In karst-dominated landscapes, as in the mountain areas of North-west 

Vietnam, baseflow contributions to total flows may be up to 80% (Tam et al., 2001). 

�
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‘What if’ scenarios 

The map showing the spatial distribution of the third indicator of changes in streamflow after 

LUCC, i.e., the number of months with decreased Qtot during the four months with low flows 

(ILF) in the B98-H03 deforestation scenario directs attention to areas with potential for boosting 

dry season flows through (re)forestation. The grid cells with ILF>0 are located in similar regions 

as found in the pan-tropical sensitivity scenarios (compare Figures 6.13a and Figure 6.10). 

Therefore, they share certain climatic and physical (through estimated model parameters) 

characteristics that make them more sensitive to LUCC-induced changes in dry season flows. 

Forestation and the associated recovery of infiltration possibilities in such areas (and others with 

similar characteristics) may reduce seasonal streamflow variability and even enhance 

streamflow during the dry season. Many of these areas coincide with the Global Map of Forest 

Restoration Opportunities (cf. Minnemeyer et al., 2011; http://www.wri.org/project/forest-

landscape-restoration) and the map of Lepers et al. (2005) showing the main areas of rapid 

forest cover changes over the period 1980–2000. The rising demands for arable land and water 

in these areas also highlight the future pressure on the agricultural land base and water 

resources (Vörosmarty et al., 2000). 

It may take many years (even decades) to observe the potentially beneficial effects on dry 

season flows afforded by improved infiltration after forestation (Bruijnzeel, 2004; Scott et al., 

2005; Zhou et al., 2010). Intensive grazing typically results in compaction by continuous cattle 

trampling of soil and thus decreased infiltrability (Alegre and Cassel, 1996; Martinez and Zinck, 

2004). The (partial) recovery of soil infiltration characteristics in affected areas often takes one 

or two decades of uninterrupted vegetation development (Alegre and Cassel, 1996; Zhou et al., 

2002; Ilstedt et al., 2007; Ziegler et al., 2001, 2009). Zimmermann et al. (2006) showed that the 

effect of 13 years of grazing was still measurable in a teak plantation after 10 years of post-

grazing growth, with a slow recovery of infiltrability when compared to soils with shorter periods 

of grazing. Ghimire et al. (2013) measured infiltration capacities in reforestation stands in the 

Middle Hills of Nepal after 25 years and found serious reductions in surface hydraulic 

conductivities due to continued over-exploitation of the forests. Nevertheless, ‘real-world’ cases 
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of large-scale forestation of severely degraded areas and posterior enhancement of dry season 

flows are slowly beginning to be published in the literature as more long-term streamflow data 

become available (e.g., Zhou et al., 2010; Wilcox and Huang, 2010). 

Forestation with fast-growing exotic species having high water use such as eucalyptus and 

pines may negate the beneficial effects of increased infiltration opportunities (see Bruijnzeel, 

2004 and references therein; Scott et al., 2005). A combination of soil conservation measures, 

targeted forestation of ‘hot spots’ and careful selection of (indigenous) species with lower water 

use (Gush, 2009) may provide a positive trade-off between enhanced infiltration opportunities 

and increased water use and thus boost dry season flows. 

Streamflow regime regulation should also be considered when interpreting the spatial patterns 

of changes in low flow durations following deforestation (Figure 6.13a). Man-made reservoirs 

are purposely built to increase water availability during the dry season for irrigation, domestic 

and industrial uses, hydropower generation and/or flood protection. Impacts of LUCC on dry 

season flows in regulated areas will likely be offset by the presence of dams (Döll et al., 2009). 

The effects of regulation are not yet considered in W3RA-LUM. Nor do atmospheric feedbacks 

that may be important when the scale of LUCC is in the order of the model grid cell (100,000 

km2). However, besides modelling or theoretical results (e.g. Wang and Eltahir, 2000, 

Makarieva and Groshkov, 2007; Sheil and Murdiyarso, 2009; but see Meesters et al., 2009), no 

physical evidence of a major negative impact on rainfall was found after large-scale forest 

clearing in Amazonia and elsewhere (Wilk et al., 2001; Costa et al., 2003; Angelini et al., 2011).  

6.5 Conclusion 

This chapter investigated the pan-tropical impacts of land use and land cover change (LUCC) 

on hydrology, particularly dry season flows. The model used here, W3RA-LUM, was tailored to 

not only simulate changes in vegetation cover, but also changes in soil condition that limit 

infiltration opportunities.  W3RA-LUM was used in four site sensitivity experiments together with 

pan-tropical hydrological modelling to: (i) define reference hydrological conditions under natural 

forest conditions; (ii) evaluate where tropical LUCC can be expected to have the greatest 
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impacts on dry season flows; and - on the basis of changes in evapotranspiration and infiltration 

- (iii) to assess potential areas for rehabilitation and regeneration of hydrological services in 

degraded areas through reforestation. 

Besides model structural limitations and data uncertainties, various hydrological responses 

were simulated through simplistic changes in vegetation cover (replacing a 100% forest cover 

with 100% grass cover) and soil conditions (good and poor soil conditions, following the Soil 

Conservation Service Curve Number approach), which do not necessarily reflect the true 

dynamics of LUCC in the ‘real world’. Despite these limitations, the results obtained suggested 

that the representation of several relevant hydrological processes in the seasonal tropics, and 

the response of the model to LUCC were reasonable. 

Sensitivity analyses were performed at four tropical sites, three with documented (negative) 

impacts of LUCC on dry season flows, which provided some interesting insights. To a 

reasonable extent, the simulated impacts of LUCC (although not replicating the observed 

magnitudes themselves) on catchment hydrological functioning resembled observed streamflow 

patterns. On an annual basis, the higher evapotranspiration derived in simulations with 100% 

forest cover resulted in a corresponding reduction in streamflow compared to simulations with 

100% grass cover. Intra-annually, results showed significant impacts of LUCC on the way 

rainfall is partitioned into evapotranspiration (Etot) and the two streamflow components, baseflow 

(Qg) and stormflow (QR). Vegetation changes and soil condition changes affected groundwater 

recharge and the amount of overland flow, which resulted in altered QR and Qg. Generally, 

simulations with 100% grass cover and poor soil conditions gave a faster rate of streamflow 

recession at the end of the wet season, whereas wet season flows also peaked around a month 

earlier than in simulations with 100% forest cover and good soil conditions. Good soil conditions 

also appeared to modulate the seasonal variability of streamflow. In addition, contrasting rainfall 

intensities between sites (in terms of the ratio of monthly rainfall totals per number of rainy days 

per month) highlighted the capacity of soils to either infiltrate more net rainfall or produce more 

runoff. 

Pan-tropical sensitivity analyses for scenarios with or without full forest cover and/or good or 

poor surface conditions showed an increase in mean annual streamflow of 18% if only 
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vegetation changes were taken into account. The amount increased to 26% if there were 

concurrent changes in soils from good to poor surface conditions. A large amount of the latter 

additional increase in mean annual streamflow occurred in more water-limited and seasonal 

environments, whereas the changes were less marked in more humid environments. These 

results highlight the potentially negative impact of LUCC on dry season flows in areas where the 

distribution of streamflow during the year is more important than total water yield. In addition, 

the results show that for some areas there was a reduction in Qtot for some of the driest months 

after forest removal, despite the corresponding decreases in Etot. An indicator for the change in 

(the duration of) low flows was used to asses which combinations of climatic and/or physical 

catchment characteristics captured by the model (i.e., soil water holding capacity, vegetation 

type, surface infiltration capacity, and rate of baseflow recession) were potentially important for 

the direction and magnitude of LUCC impacts on dry season flows. The physical (related to 

model parameters) and climatic characteristics were used to determine those areas (forested 

and pre-degraded state) in which LUCC and any consequent reduction of infiltration 

opportunities might have a negative impact on dry season flows. The results may be 

summarised as follows: 

• There is sufficient rainfall in excess of potential evapotranspiration during the wet 

season to recharge deeper soil profiles and/or the groundwater system. 

• The surface soil infiltration capacity can accommodate prevailing rainfall intensities 

during the wet season. 

• There is sufficient soil water storage to ‘carry over’ rainfall infiltrated during the wet 

season. 

•  A sufficiently long ‘buffer time’ (in terms of groundwater recession coefficient) that 

modulates the release of water stored in the deep soil profile or saturated zone as 

baseflow. 

Following the same rationale, deforested or deforested and degraded areas with similar 

characteristics were considered for forestation and potential recovery of infiltration possibilities, 

which in turn could enhance streamflow during the dry season. Some of the areas identified in 

this way coincide with areas targeted by ongoing reforestation and restoration initiatives. 
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However, it is not known if and to what extent these areas are currently experiencing water 

scarcity issues. 

There are many more factors to be considered in such areas which translate into a need for 

more detailed modelling and field investigations at the catchment or hillslope scale. Recent 

advances in remote sensing allowed the dynamic quantification of hydrological parameters 

related to ‘above ground’ factors that control the water balance (i.e., incoming solar radiation, 

precipitation and biophysical parameters related to vegetation cover and LUCC) that are 

sophisticated and accurate enough for their use in hydrological modelling. However, the 

understanding of the underlying subsurface factors (soil and geological substrate hydraulic 

characteristics) that affect evapotranspiration, infiltration, soil water retention, groundwater 

recharge and movement is of equal importance to close the knowledge gap in the forest ‘pump’ 

and ‘sponge’ paradigm. Overall, the results presented provide the first comprehensive pan-

tropical overview of the impacts of forest removal and reforestation on streamflow. In addition, 

the present results direct attention to areas where some of the mentioned climatic and physical 

characteristics appear to be important in governing site vulnerability to changes in dry season 

flows, both in terms of decreased flows after surface degradation and possibly enhanced flows 

after vegetation restoration. 



Chapter 7 Summary, conclusions and future research needs 

Contents 

7.1 Summary and conclusions 

7.2 Future research needs 



7-1 

7.1 Summary and conclusions 

The land use and land cover change (LUCC) that alter the hydrological functioning of a 

landscape in the context of this research incorporate both changes in plant evaporation and soil 

hydraulic properties (specifically the partitioning of (net)rainfall into water that infiltrates into the 

soil or water that runs-off along the soil surface). These two impacts of LUCC can be 

metaphorically compared to changing a hydrological ‘pump’ (through plant evaporation) and a 

‘sponge’ (through factors governing infiltration rates such as the effects of organic matter and 

soil bioporosity).  The balance between these two impacts will determine the net hydrological 

change resulting from LUCC. Chapter 1 reviewed a number of case studies, from local to 

regional scales, in which a reduction of dry season flows occurred after forest removal, due to a 

loss in infiltration opportunities to the extent that soil moisture storage and thus groundwater 

recharge were critically reduced (i.e., loss of the ‘sponge’ effect). 

Earlier research has shown that agricultural expansion and intensification of agricultural 

practices in the tropics have triggered widespread land degradation processes which may have 

caused adverse changes in soil physical properties, reducing soil surface infiltration capacity 

and enhancing the intensity and frequency of overland flow and surface erosion. In the light of 

ongoing LUCC throughout the tropics and concerns over their potential impacts on dry season 

flows, hydrological analysis and modelling was performed to assess where tropical LUCC can 

be expected to have the greatest impacts on dry season flows.  The present focus is on dry 

season flows since for much of the tropics this is the period when changes in water availability 

have their greatest impact on agricultural, domestic and other water-dependent activities. In 

addition to understanding where such problems might occur, this thesis examined already 

degraded areas where forestation could rehabilitate and regenerate so-called hydrological 

ecosystem services. 
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7.1.1 Identifying hydrological impacts of LUCC on streamflow metrics at the regional 

scale 

Chapter 2 reviewed several published case studies of forest cover change impacts on long-term 

streamflow at the regional scale for various parts of the tropics (i.e., catchments with an area 

>10,000 km2). At the time of the review, only seven studies at this scale were reported in the 

published literature. Although the area of forest removed in six of the studies was large enough 

(19 to 63%) to increase annual streamflow post-LUCC (i.e., as is typically reported for small 

experimental catchments), three studies showed no increase (cf. Table 1 in Chapter 2). In 

addition to these contrasting results, the role of climate variability was not fully addressed in 

some of these studies. Furthermore, more recently published evidence suggested that the role 

of climate variability may have played a part in the observed increases in streamflow in at least 

two of the mentioned studies and thus the purported impacts of LUCC on streamflow deserved 

further scrutiny. 

Quality long-term (i.e., >20 years) daily rainfall and streamflow data for two large (>10,000 km2) 

catchments located in the seasonal tropics of Australia which underwent woodland conversion 

to grazing land were analysed to test the trade-off between the associated ‘pump’ and ‘sponge’ 

effects at the river basin scale.  Earlier work in the area (Ive et al., 1976; Thornton et al., 2007; 

Bonell and Williams, 2009) had demonstrated declining infiltration rates after converting 

woodlands to grazing land. For one of the two investigated catchments (the Comet river basin, 

16,449 km2) Siriwardena et al. (2006) had postulated that most of the observed increase in 

mean annual streamflow between the pre- (1920–1949) and post-LUCC (1970–1999) periods 

could be attributed to a 45% removal of Acacia woodland whereas part of the increase in flow 

was explained in terms of a concurrent increase in rainfall. The objective of the present study 

also included the isolation of LUCC from climate variability effects on streamflow. Several 

published approaches providing ‘multiple lines of evidence’ were used to achieve these 

objectives. In doing so, it was established that most of the increase in observed streamflow was 

related to climate variability, although a period immediately post-LUCC showed an increase in 

streamflow related to a reduction in evapotranspiration (i.e., a reduction in the ‘pump’ effect). It 
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was also demonstrated that LUCC enhanced storm flows of all magnitudes and somewhat 

decreased slower flows, possibly as a consequence of reduced infiltration (i.e., a reduction of 

the ‘sponge’ effect); although this decrease was not reflected in a decrease in dry season flows 

per se. The present findings also suggested that some of the simple but successful techniques 

for detecting the strong influence of land cover in small catchments on long-term streamflow 

(i.e., Budyko-type1 models) might not be able to do so in large catchments with mixed land 

cover (cf. Oudin et al., 2008 and Chapter 5, Appendix C; see Section 7.2.1 for additional 

details). Furthermore, Chapter 2 highlighted the importance of climate variability and the 

difficulty to separate the impact of LUCC from effects of climate variability in observed flows. 

Therefore, long-term climatic data were used for the subsequent scenario modelling in order to 

account for the typically observed variability. 

Summarising, this study contributed to the understanding of LUCC impacts on streamflow in 

large ‘real-world’ catchments through the application of several inference methods that 

investigated not only changes in annual water yields but also seasonal and daily streamflow 

metrics. The results highlighted an increase in storm flows and a reduction in slower flows 

which, given the ongoing intensification of LUCC across the tropics, may result in water 

resource relevant changes to dry season flows. 

Publication of research 

Peña-Arancibia, J. L., A. I. J. M. van Dijk, J. P. Guerschman, M. Mulligan, L. A. Bruijnzeel, and 

T. R. McVicar (2012), Detecting changes in streamflow after partial woodland clearing in two 

large catchments in the seasonal tropics, Journal of Hydrology, 416/417, 60-71. 

7.1.2 Model implementation, parameterisation and input data 

The “World-Wide Water Resources Assessment system – Land Use Model” (W3RA-LUM) was 

used here to simulate the hydrological impacts of LUCC and to achieve the thesis aims and 

objectives. A key requirement was that W3RA-LUM had to be sensitive to the land cover signal 

                                                     
1

Budyko postulated that the long-term average annual evapotranspiration from catchments is determined by rainfall 
and available energy and formulated a simple model that showed good agreement with the long-term water balance for 
catchments in the former USSR (Zhang et al., 2008).
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in ‘real-world’ catchments with mixed land cover and various degrees of land degradation. 

Modelling experiments using daily long-term streamflow and rainfall time series from 278 

catchments with mixed land cover in Australia and the process model Australian Water 

Resources Assessment system Landscape hydrology (AWRA-L, Van Dijk, 2010; on which the 

vegetation water use module in W3RA-LUM is based, sharing the same parameter values) 

demonstrated that this more complex (but uncalibrated) process model had the ability to 

reproduce an observed land cover signal in streamflow time-series of similar or higher 

magnitude than a calibrated Budyko-type model (cf. Chapter 5, Appendix C). Step-wise 

regression analysis showed that climate factors other than potential evapotranspiration and 

rainfall (the most commonly used inputs in Budyko-type models), such as daily rainfall intensity, 

had a considerable influence on streamflow and were good predictors of land cover hydrological 

behaviour for some land cover types. These improved results constituted the decisive factor 

when selecting a process model capable of assessing the impacts of LUCC on dry season flows 

at a daily time scale across the tropics. 

Publication of research 

Van Dijk, A. I. J. M., J.L. Peña-Arancibia and L. A. Bruijnzeel (2012), Land cover and water 

yield: inference problems when comparing catchments with mixed land cover. Hydrology and 

Earth System Sciences, 16, 3461-3473. 

In Chapter 5, the structure of W3RA-LUM was modified to incorporate not only the changes in 

LUCC that directly affect evapotranspiration (already present in AWRA-L), but also those that 

affect the partitioning of infiltration and runoff by using the Soil Conservation Service Curve 

Number Method (SCS-CN; USDA, 1986). The SCS-CN method translates the impacts of LUCC 

on the production of surface runoff (‘storm flows’) and is currently the only method for global 

application of LUCC infiltration impacts scenarios that has a strong empirical basis and is 

responsive to soil type and degradation scenarios. The method included the development of a 

hydrologic soil condition indicator based on a global proxy of current land degradation status. 

This proxy was derived from trends in the long-term rain-use efficiency (RUE) adjusted 

normalised difference vegetation index (NDVI) (Bai et al., 2008), enabling a more realistic 
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representation of current land condition in a global Curve Number map. This new feature was 

subsequently used for scenario modelling using land cover maps that represented: (i) pre-

agricultural forest cover; (ii) current forest cover, and (iii) future forest cover based on projected 

deforestation rates. Corresponding changes in runoff Curve Numbers for the areas experiencing 

deforestation in the respective maps were computed by supplanting the dominant forest type 

(distinguished per climatic zone) with grasslands. In addition, any decrease in forest cover was 

associated with a change from ‘good’ to ‘poor’ hydrologic soil conditions (sensu SCS, 1986), 

thereby representing the most extreme case of reduction in soil infiltration characteristics. These 

structural modifications and typification of Runoff Curve Numbers according to soil conditions 

are a novel use in the study of the hydrological impacts of LUCC at the pan-tropical scale. Most 

modelling studies, both in the tropics and elsewhere, that have investigated LUCC impacts on 

hydrology focused solely on changes in evapotranspiration and not on any corresponding 

changes in infiltration (for exceptions see Beck et al., 2013; Ghimire et al., 2013). 

The structural modifications to the W3RA-LUM model enabled a more realistic representation of 

hydrological processes for modelling LUCC impacts on hydrology through the incorporation of 

changes that affect both evapotranspiration and infiltration. 

Data for parameters that represent groundwater flow movement are few and far between, 

particularly with respect to aquifer thickness and hydraulic conductivity. Therefore, in Chapter 4 

an approach was devised to parameterise and test a conceptual linear storage-discharge model 

to simulate the shape of the recession hydrograph, considered here as being representative of 

baseflow. The drainage characteristics of 167 tropical and sub-tropical catchments represented 

by the linear reservoir baseflow recession constant kbf were linked empirically through statistical 

regression techniques to parameters representing catchment climate, geology and morphology. 

It was shown that the best predictors of kbf were climatic, whereas terrain and geological 

characteristics were of secondary importance. This finding was partly considered as a 

justification for the use of the grid cell as the spatial modelling unit and the simplified 

representation of a ‘catchment’, thereby avoiding complex grid and vector model hybrids to 

emulate catchment boundaries. Next, an empirical relation was derived to spatially estimate kbf

from catchment aridity (the ratio of rainfall to potential evapotranspiration), which is readily 



7-6 

available from spatial climatic datasets at a pan-tropical scale. This relationship explained 49% 

of the observed variance in kbf. The differences in kbf for dry and humid zones demonstrated the 

interconnection between climate and subsurface characteristics of catchments. Higher (faster) 

recession coefficients were observed for the drier catchments, highlighting mainly event-driven 

streamflow and/or fast draining perched aquifers. Conversely, the lower (slower) recession 

coefficients found for the more humid catchments and may be attributed to excess rainfall 

recharging deeper soils and porous aquifers. 

Summarising, this study provided the best climatic and terrain descriptors for baseflow 

recession in 167 (sub)tropical catchments. An equation was then derived to parameterise the 

recession coefficient of a linear reservoir pan-tropically. This is of utmost importance in the 

modelling of dry season flows (i.e., the timing of the release of water stored in the deep soil 

profile or saturated zone as baseflow).  

Publication of research 

Peña-Arancibia, J. L., A. I. J. M. van Dijk, M. Mulligan, and L. A. Bruijnzeel (2010), The role of 
climatic and terrain attributes in estimating baseflow recession in tropical catchments, 
Hydrology and Earth System Sciences, 14(11), 2193-2205. 

In Chapter 3, a literature review was conducted to assess the strengths and weaknesses of 

commonly used climate forcing data needed as inputs in W3RA-LUM, which included daily 

precipitation (P in mm), incoming shortwave radiation (SWdown in Wm-2) and minimum and 

maximum temperatures (Tmin,max in ºC). A more in-depth evaluation was performed for 

precipitation, which is both the most significant component of the hydrologic cycle and more 

variable in space and time than all other climatic variables. Two high-resolution gauge-only daily 

precipitation analyses available for Australia and South and East Asia were used as a reference 

to evaluate the respective precipitation datasets. The present results showed that the bias-

corrected precipitation from the 50-Year High-Resolution Global Dataset of Meteorological 

Forcings for Land Surface Modelling developed by Sheffield et al. (2006) at Princeton University 

(referred to hereafter as the ‘Princeton’ data), was more accurate in reproducing the observed 

rainfall for both monthly accuracy metrics and daily rainfall intensity metrics (with daily metrics 

being crucial for surface hydrological processes, particularly infiltration and runoff generation). 
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As such, the Princeton data were considered as input for the hydrological modelling 

experiments conducted in Chapter 6. The other climatic variables in the Princeton dataset were 

also bias-corrected using ancillary data of reasonable quality; thus they were also used in the 

later modelling experiments.

Publication of research 

Peña-Arancibia, J. L., A. I. J. M. van Dijk, M. P. Stenson, and N. R. Viney (2011) Opportunities 
to evaluate a landscape hydrological model (AWRA-L) using global data sets MODSIM 2011, 
19th International Congress on Modelling and Simulation Modelling and Simulation Society of 
Australia and New Zealand, December 2011, 4071-4077 pp. 

Peña-Arancibia, J. L., A. I. J. M. van Dijk L.J. Renzullo, and M. Mulligan (2013), Evaluation of 
precipitation estimation accuracy in reanalyses, satellite products and an ensemble method for 
regions in Australia and in South and East Asia, Journal of Hydrometeorology, 14, 1323-
1333. 

7.1.3 Modelling the pan-tropical impact of LUCC and surface degradation on dry season 

flows and comparison with empirical observations at sites across the tropics 

In Chapter 6, W3RA-LUM was used in four site-sensitivity experiments ahead of pan-tropical 

hydrological modelling. Sensitivity analyses were performed for four catchments with 

documented (negative) impacts of LUCC on dry season flows. To investigate the hydrological 

impacts of LUCC (forest removal and soil surface degradation) simplistic changes in vegetation 

cover (replacing a 100% forest cover with 100% grass cover) and soil conditions (representing 

‘good’ and ‘poor’ soil conditions where ‘good’ is considered to denote soils with a high infiltration 

rate; SCS, 1986) were modelled. The simulated impacts of LUCC on catchment hydrological 

functioning resembled observed streamflow patterns at the four sites (although not replicating 

the observed magnitudes themselves). The implemented experiments affected groundwater 

recharge and the amount of overland flow, which resulted in altered storm flow and baseflow. 

Faster rates of streamflow recession and peaks occurring about a month earlier were observed 

for simulations with 100% grass cover and poor soil conditions compared to simulations with 

100% forest cover and good soil conditions. Good soil conditions also appeared to dampen the 

seasonal variability of streamflow.  
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Sensitivity analyses similar to the site sensitivity experiments described above were also 

performed pan-tropically. Scenarios without a full forest cover showed an increase in mean 

annual streamflow of 26% if there were concurrent changes in soils from ‘good’ to ‘poor’ surface 

conditions, as opposed to 18% when soil conditions did not change. The increase was more 

pronounced in more water-limited and seasonal environments, whereas the seasonal amplitude 

of streamflow also increased by similar amounts, highlighting a potentially stronger negative 

impact of LUCC on dry season flows in these areas. Moreover, the results showed that for some 

areas there was a reduction in streamflow for some of the driest months after forest removal 

and advanced soil degradation, despite the corresponding decreases in evapotranspiration. 

Statistical analysis was used to investigate the climatic and physical characteristics for which 

forest removal and any consequent reduction of infiltration opportunities might have a negative 

impact on dry season flows in these areas (forested and pre-degraded state) and included the 

following (Objective 2): (i) there is sufficient rainfall in excess of potential evapotranspiration 

during the wet season to recharge deeper soil profiles and/or the groundwater system; (ii) the 

surface soil infiltration capacity can accommodate prevailing rainfall intensities during the wet 

season; (iii) there is sufficient soil water storage to ‘carry over’ rainfall infiltrated during the wet 

season; and (iv) a sufficiently long ‘buffer time’ (in terms of groundwater recession coefficient) 

that modulates the release of water stored in the deep soil profile or saturated zone as 

baseflow. 

Results from pan-tropical modelling using both current forest cover and future forest cover maps 

were used to identify ‘hotspots’ in which forest removal and concurrent advanced soil 

degradation may have a negative impact on dry season flows (Objectives 1 and 2). Areas that 

showed a reduction in streamflow for some of the driest months despite the increases in 

evapotranspiration associated with the conversion from forest to grassland and allowing 

advanced soil degradation to occur included: Central America, northern South America, the 

Andes, Bolivia, Brazil, the Caribbean, Congo, Gabon, Tanzania, Ethiopia, South Africa, 

Madagascar, India, Bangladesh, and several countries in Southeast Asia (Chapter 6, Figure 

6.10). 
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Similarly, but using modelling results for the pre-agricultural forest cover and current forest 

cover situations, areas with similar climatic and biophysical characteristics but deforested and/or 

degraded according to Bai et al. (2008) were then identified for forestation with associated  

potential for recovery of infiltration (Objective 3). Some of the areas coincided with areas 

targeted by ongoing reforestation and restoration initiatives (cf.Minnemeyer et al., 2011; 

http://www.wri.org/project/forest-landscape-restoration) and the map of Lepers et al. (2005) 

showing the main areas of rapid forest cover changes over the period 1980–2000. However, no 

attempt was made as yet to assess if and to what extent these areas are currently experiencing 

water scarcity issues. 

Publication of research 

Peña-Arancibia, J. L., M. Mulligan, L. A. Bruijnzeel and A.I.J.M van Dijk (in prep.), Pan tropical 
modelling of the effects of land use and land cover change on dry season flows. Agriculture 
Ecosystems & Environment, manuscript in preparation.  

7.2 Future research needs 

Several possible research avenues have emerged from the present work which are grouped 

below in the following three subjects: (i) identifying hydrological impacts of LUCC in streamflow 

records; (ii) improvements to the W3RA-LUM for pan-tropical LUCC impact analyses; (iii) further 

analysis of modelling results. 

7.2.1 Identifying hydrological impacts of LUCC in streamflow records 

As new datasets become publicly available, there will be opportunities for analysing the 

hydrological impacts of LUCC on streamflow for additional ‘real-world’ catchments. The opening 

of the United States Geological Survey's (USGS) Landsat data archive (Woodcock et al., 2008) 

will make possible the retrospective analysis of catchments having significant LUCC, in a more 

accurate fashion than is currently possible using MODIS-based data on LUCC. Methods to 

monitor LUCC at national scales in an operational fashion exist and are in use in several 
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countries (Hansen et al., 2012): e.g.; terra-i (www.terra-i.org) for the whole of Latin America, the 

PRODES product from Brazil’s National Institute for Space Research (INPE), the Australia 

National Carbon Accounting System (NCAS) forest classification product (used in Chapter 2) 

from the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the 

National Land Cover Dataset (NLCD) from the USGS. For example, NCAS data provide the 

presence or absence of forests at 25 m resolution for fifteen time-periods since 1972. In the 

case of persistent cloud cover, as tends to be the case in many humid tropical areas, MODIS 

can be used to temporally disaggregate the Landsat images (cf. Broich et al., 2011). 

The acquisition of tropical hydrometric data is still a major challenge. In the case of rainfall, the 

inaccuracies and regional and seasonal biases of satellite-derived and reanalysis data make 

their direct use questionable where there are better sources. It was demonstrated in Chapter 3 

the use of in situ rainfall station data to improve rainfall estimates in satellites and reanalyses 

products, particularly the correction of satellite biases in tropical locations. Regrettably, 

observational hydrometric data collection – including rainfall, streamflow and other 

meteorological variables – is in decline (Bonell et al., 1993; Wohl et al., 2012) (Figure 7.11), 

especially in the tropics. 

Figure 7.1 Number of precipitation stations in the Global Historical Climatology Network data set 
for each year (after Wohl et al., 2012). 
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Long-term, high-quality, pan-tropical streamflow data are also limited, particularly at the daily 

time-scale. For the current research, daily streamflow data for 1175 tropical and sub-tropical 

stations with >5 years of data were selected from the Global Runoff Database (GRDB) of the 

Global Runoff Data Centre (http://www.bafg.de/GRDC/EN/Home/homepage_node.html), which 

is the main repository for freely-available global streamflow data. However, many of the station 

records terminated in the 1980s. Within Australia, the Bureau of Meteorology 

(www.bom.gov.au) is compiling and centralising all available hydrometric data. During this 

research, several other Australian ‘real-world’ catchments with long-term streamflow data and 

concurrent LUCC were identified using NCAS data. Although situated outside of the tropics, 

these provide an interesting opportunity to extend the research to catchments in temperate 

Australia. The availability of these hydrometric data and more detailed biophysical data (e.g., 

LUCC dynamics, soil depth maps, soil hydraulic properties and groundwater systems) may be 

of help in the investigation of the trade off between changes in the ‘pump’ and ‘sponge’ effects 

associated with LUCC in different Australian settings. 

7.2.2 Improvements to W3RA-LUM for pan-tropical LUCC impact analysis 

The calibrated variant of W3RA (Van Dijk et al., accepted) using daily streamflow observations 

for 160 Australian catchments performed equally or better than other global models from the 

Global Land Data Assimilation System (GLDAS; Rodell et al., 2004) when evaluated against 

monthly observed streamflow for 1461 catchments (Chapter 5). However, to reproduce 

measured monthly streamflows required unrealistic values for parameters that control 

evapotranspiration such as vegetation leaf area index (LAI). Ongoing investigations with AWRA-

L in continental Australia have included remotely sensed near-surface soil moisture and LAI in a 

multi-objective calibration scheme, which marginally improved streamflow predictions but 

noticeably improved modelled LAI and soil moisture estimates (Zhang et al., 2011). The results 

obtained with W3RA-LUM using the parameter set obtained by Zhang et al. (2011) can be 

evaluated against streamflow for the 1461 aforementioned catchments as was done in Chapter 

5 with the default parameter set. 
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Existing flow networks at 1º grid cell resolution (Oki and Sud, 1998) can be used to implement a 

routing algorithm for W3RA-LUM which in turn can be used to compare the modelled streamflow 

to gauge data. This improvement is crucial to analyse upstream-downstream interactions 

depending on the location and pattern of the LUCC. In addition, routing which accounts for 

delays in large dams (e.g., Hanasaki et al., 2006) can be implemented using existing dam 

datasets (Mulligan et al., 2009). 

7.2.3 Further analysis of modelling results 

The analyses provided here focused on long-term intra-annual impacts of LUCC on streamflow. 

Whilst this can help to determine ‘hotspots’ where tropical LUCC can be expected to have the 

greatest impacts on dry season flows, the availability of long-term (1948–2008) daily time-series 

permits other types of analyses as well. For example, a streamflow drought analysis can be 

performed in each grid cell for the scenarios investigated (e.g., Hisdal et al., 2001). The dry 

season can be defined in each grid cell and indices of drought frequency and severity can be 

computed, which will provide a quantitative metric rather than the qualitative metric used for dry 

season flows here. In addition, it will be possible to compute trends of drought frequency and 

severity during the dry season. 
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Appendix A - Glossary of hydrology related terminology 

Baseflow - Part of the discharge which enters a stream channel mainly from groundwater, but 

also from lakes and glaciers during long periods when no precipitation or snowmelt occurs. 

Baseflow recession - Period of decreasing baseflow discharge as indicated by the falling limb 

of a hydrograph starting from the peak. 

Dry season flows - In certain types of climate, an annually recurring period of one or more 

months during which streamflow is at a minimum for the region.  

Evapotranspiration - Quantity of water transferred from the soil and/or canopy to the 

atmosphere by evaporation and plant transpiration. 

Groundwater recharge - Process by which water is added from outside to the zone of 

saturation of an aquifer, either directly into a formation, or indirectly by way of another formation.

Hydrograph - Graph showing the variation in time of some hydrological data such as stage, 

discharge, velocity, sediment load, etc. (hydrograph is mostly used for stage or discharge). 

Hydrological response units - A basic computational unit assumed to be homogeneous in 

hydrologic response in terms of physical characteristics including soils, vegetation cover, 

topography, saturated area, etc. 

Infiltration - Flow of water through the soil surface into a porous medium. 

Infiltration capacity - Maximum rate at which water can be absorbed by a given soil per unit 

area under given conditions. 

Infiltration-excess overland flow - Overfland flow occurring when the rate of precipitation on a 

surface exceeds the rate at which water can infiltrate the ground. 

Interception - Process by which precipitation is caught and held by vegetation (canopy and 

litter structures) then may be lost by evaporation without reaching the ground. 



Interflow - That portion of the precipitation which has not passed down to the water table, but is 

discharged from the area as subsurface flow into stream channels. 

Land degradation - A temporary or permanent decline in the productive capacity of the land. 

This can be seen through a loss of biomass, a loss of actual productivity or in potential 

productivity, or a loss or change in vegetative cover and soil nutrients. 

Land surface model - A one-dimensional computational model developed that describes 

ecological processes joined in many ecosystem models, hydrological processes found in 

hydrological models and flow of surface common in surface models using atmospheric models. 

Overland flow - Flow of water over the ground before it enters a definite channel. 

Percolation - Flow of a liquid through an unsaturated porous medium, e.g. of water in soil, 

under the action of gravity. 

Perched aquifer - Groundwater body, generally of moderate dimensions, supported by a 

relatively impermeable stratum and which is located between a water table and the ground 

surface. 

Porosity - Ratio of the volume of the interstices in a given sample of a porous medium, e.g. 

soil, to the gross volume of the porous medium, inclusive of voids. 

Potential evapotranspiration - Maximum quantity of water capable of being evaporated in a 

given climate from a continuous stretch of vegetation covering the whole ground and well 

supplied with water. It thus includes evaporation from the soil and transpiration from the 

vegetation of a specified region in a given time interval, expressed as depth.         

Runoff - That part of precipitation that appears as streamflow. 

Saturated hydraulic conductivity - Property of a saturated porous medium which determines 

the relationship, called Darcy's law, between the specific discharge and the hydraulic gradient 

causing it. 

Saturated zone - Part of the water-bearing material in which all voids, large and small, are filled 

with water. (IGH) 



Saturation-excess overland flow - Overfland flow occurring when precipitation falling on 

saturated soil immediately produce surface runoff. 

Soil bioporosity - Soil porosity created by plant roots and soil fauna. 

Storm flow - That part of surface runoff which reaches the catchment outlet shortly after the 

precipitation starts. 

Subsurface flow - Any flow below the surface of the ground which may contribute to interflow, 

base flow or deep percolation. 

Water yield - Quantity of water derived from a unit area of a drainage basin in a given time 

interval.
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Abstract: The Australian Water Resources Assessment system Landscape model (AWRA-L) aims to 

produce interpretable water balance component estimates covering all of Australia, and as much as possible 

agree with water balance observations, including point gauging data and satellite observations. The 

opportunities to evaluate AWRA-L water balance predictions in Australia are severely limited by the limited 

amount of field data (e.g.  flux tower observations, soil moisture measurements) and the limited range of 

environments and conditions for which observations are available. Opportunities exist to further evaluate and 

improve AWRA-L model predictions by using global collations of in situ soil moisture, flux tower, and 

streamflow data available from the broader scientific community. To evaluate AWRA-L against these 

observations, global input data are required. We reviewed and compared results of published studies about 

meteorological data that could be used to parameterise AWRA-L globally. Review findings include:  

• Satellite-based rainfall performs better during warm seasons and in the tropics, although overestimating 

total rainfall. Reanalysis data outperforms satellite-based rainfall during winter and in higher latitudes. 

Gauge bias-corrected TRMM 3B42V6 reduces observed bias in many areas globally. A blending 

approach may enhance rainfall quality estimates on a global scale, using rainfall from reanalysis in 

higher latitudes and satellite estimates such as TRMM 3B42V6 in mid-latitudes. 

• Global monthly, annual and climatological surface temperature anomalies from reanalysis had very 

similar values. At the daily scale, compared daily maximum and minimum temperature probability 

density functions from ERA-40, JRA-25 and NCEP-DOE were dissimilar with large regional 

differences, but overall no reanalysis showed more skill than the other two when compared against 

regional observational temperature data. 

• Surface shortwave radiation derived from satellite data generally has smaller biases than reanalysis 

because they are more constrained by observations. Of the three satellite-based incoming shortwave 

radiation estimates, GEWEX-SRB appeared superior to the other two.  Globally, the biases in the 

climatology of the re-analyses are considerable.  

The 60 year (1948�2008) Princeton Global Forcing (PGF) dataset with a spatial resolution of 1º and daily 

time step was considered an adequate compromise for trial simulations. PGF is based on the NCEP/NCAR 

reanalysis but uses several additional data sources to constrain and reduce bias in the meteorological 

variables. We implemented a prototype 1° resolution global hydrological model based on AWRA-L - 

referred to here as the World-Wide Water Resources Assessment system (W3RA). W3RA was parameterized 

with the same set of parameters used in AWRA-L except for baseflow coefficient, which was derived from a 

global analysis of baseflow recession. In addition, a snow module was added to simulate snowmelt and snow 

accumulation. Other data used included land cover maps based on MODIS reflectance data, albedo 

climatology derived from white-sky albedo and wind speed climatology. 

As part of preliminary evaluation of W3RA, runoff estimates were compared against a Global Runoff Data 

Centre (GRDC) blend of observations and modeled runoff climatology. Ongoing evaluation will include 

comparisons against a quality controlled gauged daily flows in 167 unimpaired catchments located mostly in 

the tropics, a global data set of collated site soil moisture measurements, and evapotranspiration from a 

global network of flux towers. 

Keywords hydrology, global modelling, global data sets, AWRA-L, W3RA   

19th International Congress on Modelling and Simulation, Perth, Australia, 12�16 December 2011 

http://mssanz.org.au/modsim2011
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1. INTRODUCTION 

 

The Australian Water Resources Assessment system Landscape model (AWRA-L) is a grid based distributed 

biophysical model that simulates water stores and flows in the vegetation, soil and local catchment 

groundwater systems (Van Dijk and Renzullo, 2011). As part of the requirements for model adoption in 

water balance assessment and water accounting for the whole of Australia, model outputs considered to 

provide a reliable indication of the quality of water balance were evaluated against observations (Van Dijk 

and Warren, 2010). Data used to perform model evaluation included daily streamflow data from over 300 

catchments, eddy covariance flux tower evapotranspiration data at four sites, radar remote sensing (ASAR 

GM) derived top soil water content estimates and optical remote sensing (AVHRR, MODIS) derived 

vegetation fractional cover, leaf area index and greenness. 

The opportunities to further evaluate AWRA-L water balance predictions in Australia are severely limited by 

the limited amount of field data.  Flux tower observations and in situ soil moisture measurements only 

represent a limited range of environments and conditions for which observations are available. Global 

collations of in situ soil moisture, flux tower, and streamflow data available from the broader scientific 

community can be used to further evaluate and improve AWRA-L. Additional benefits of having the model 

implemented on a global scale would be to compare model estimates to results from other global models and 

further identify potential improvements in model structure or parameterisation. To evaluate AWRA-L against 

these observations, global spatial model input data sets are required, particularly of daily rainfall, radiation, 

temperature, soils, and land cover. A review of the data needed to parameterize a global version of AWRA-L; 

daily meteorological forcing in particular, is the main focus of this paper.  Based on findings of from 

published studies, we implemented a 1° resolution prototype !World-Wide Water Resources Assessment 

system" (W3RA). Simulated streamflow was compared with a Global Runoff Data Centre (GRDC) 

composite of observations and modeled runoff climatology (Fekete et al., 2002). 

2. METEREOLOGICAL FORCING DATA 

2.1. Rainfall 

Seven satellite-based rainfall products and five global atmospheric reanalysis of meteorological observations 

were reviewed (Table 1; acronyms explained in cited references). Several studies have been conducted to 

evaluate different rainfall products from satellite, reanalysis and climatologic data sets by comparing them to 

ground observations in areas with reliable gauge or radar coverage or through their predictive capability of 

state variables such as soil moisture or streamflow from hydrological or land-surface models (e.g. Ebert et 

al., 2007; Tian et al., 2009; Pan et al., 2010; Tian and Peters-Lidard, 2010). Findings from most studies 

suggest a better agreement of satellite-based rainfall with baseline data over warm seasons whereas reanalysis 

rainfall outperformed the satellite estimates during the winter season on monthly and daily time-scales. It was 

also found in most studies that high (often convective) rainfall events are better captured by satellite 

estimates, although the amplitudes were generally overestimated (Ebert et al., 2007; Tian et al., 2009).  The 

incorporation of surface rain gauge data, such as in TRMM 3B42V6, helped to reduce total errors; by 

adjusting the amplitudes of the hit biases and false precipitation. A global map of measurement uncertainties 

in daily satellite-based precipitation estimates were produced by Tian and Peters-Lidard (2010). Estimates 

tended to agree particularly well over areas with stronger precipitation, especially over the tropics. The 

performance at higher latitudes degraded considerably, especially above of 40° latitude. This was due to 

coverage by fewer sensors (e.g., lack of TRMM coverage), light precipitation events, snowfall, and in the 

case of land surfaces, snow and ice on the ground which produce a signal similar to precipitation. Tian et al. 

(2009) found that daily satellite-based rainfall estimates in continental US constantly missed about 20#80% 

of light precipitation (<10 mm d
-1) and that the amount of false precipitation can occasionally be exceedingly 

large, especially for winter in western USA. During winter, missed precipitation was a major contributor to 

the total errors (up to 40%) of TRMM-3B42RT, CMORPH, and PERSIANN, especially over complex terrain 

(Tian et al., 2009). 
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Table 1. Main characteristics of daily or sub-daily global and quasi-global rainfall gridded data sets. 

Dataset Grid resolution Frequency Coverage Period Reference 

Satellite      

TRMM-3B42 (RT or V6) 0.25º 3h 60ºS~60ºN 1998~ Huffman et al. (2007) 

CMORPH 0.08º~0.25º 0.5, 3h 60ºS~60ºN 2002~ Joyce et al. (2004) 

PERSIANN 0.25º 3, 6h 50ºS~50ºN 2000~ Sorooshian et al. (2000) 

GPCP -1DD  1º Daily Global 1996~ Huffman et al. (2001) 

Reanalysis        

ERA-40 1.125º 6h Global 1957�2002 Uppala et al. (2005) 

ERA-Interim ~0.7º 6h Global 1989~ Simmons et al. (2007) 

NCEP-NCAR 2.5º 6h Global 1948~ Kalnay et al. (1996) 

NCEP-DOE 2.5º 6h Global 1957~ Kanamitsu et al. (2002) 

JRA-25 1.25º 6h Global 1979�2004 Onogi et al. (2007) 

 

Daily reanalysis rainfall from ERA-interim, followed by ERA-40 were considered more accurate than both 

NCEP reanalysis when compared to relatively dense global  or local rainfall gauge networks (e.g. Pan et al., 

2010)  and generally outperformed the blended satellite estimates during the winter season over the 

continental USA, Australia, and Western Europe (Ebert et al., 2007). ERA-40 produced reasonable monthly 

rainfall comparisons over the Northern Hemisphere continents, with some notable biases, but less so in 

tropics where it had high positive bias, except for a negative bias over the Amazon during the rainy season 

(Betts et al., 2006; Bosilovich et al. 2008). The recent reanalysis JRA-25, showed good monthly rainfall 

comparisons in both the Northern Hemisphere continents and the tropical oceans, but varied in time 

according to the available observing systems, with additional satellite data improving precipitation and other 

hydrological data (Bosilovich et al. 2008). Rainfall in reanalysis data and impacts on water balance at a basin 

and global scale has been researched in some detail (Fekete et al., 2004). Results showed that rainfall biases 

lead to errors in water balance calculations and uncertainties of similar magnitude in humid areas and larger 

over arid and semi-arid areas.  Several studies have aimed to address reanalysis rainfall errors by correcting 

for biases (e.g. Betts et al., 2005) with resulting improved water balances. Following this line, the 1° and 3-

hourly 50-year daily meteorological Princeton Global Forcing (PGF) (1948�2008) dataset was developed by 

Sheffield et al. (2006). It was based on the NCEP-NCAR reanalysis and included corrections for known 

rainfall biases and rain day statistics using the latest global meteorological data sets and TRMM rainfall data. 

This dataset has been compared to ERA-40 and used in large-scale hydrological modelling to simulate soil 

moisture in the Yellow River Basin and showed better inter and intra-annual patterns (Li and Ma, 2010).  

2.2. Surface air temperature 

Absolute global daily temperature (Ta) observations are available from reanalysis. Monthly, annual and 

climatological Ta anomalies from aggregated daily estimates had very similar values in most reanalysis data 

sets including both ERA reanalysis, JRA-25 and NCEP-NCAR; when compared to station interpolated 

gridded global data sets such as HadCRUT3 (Simmons et al., 2004; Onogi et al., 2007). ERA-40 was closer 

to HadCRUT3 data than the NCEP-NCAR reanalysis, in all but the earliest years, reflecting the fact that 

surface observations were included in the ERA reanalysis (Simmons et al., 2004). At the daily temporal 

scale, Pitman and Perkins (2009) compared daily maximum and minimum Ta probability density functions 

from ERA-40, JRA-25 and NCEP-DOE to regional observational data encompassing different environments 

in the absence of global observational data sets. Estimates of maximum Ta had large regional differences but 

overall no reanalysis showed more skill than the other two. All reanalysis failed to match observations of 

maximum Ta in the Amazon. For minimum Ta, all reanalysis showed reasonable agreement north of ~45º N, 

whereas ERA-40 appeared anomalous compared to the other reanalysis and to observations. Based on these 

results, Pitman and Perkins (2009) suggested the use of the 2-m air temperatures is not reliable and all 

reanalysis should be used independently to reflect uncertainty from input data. PGF also includes Ta 

estimates, NCEP-NCAR Ta was adjusted to match an earlier version of HadCRUT3 monthly and daily 

averages in order to correct for known temperature biases (Sheffield et al., 2006).  

4073



Peña Arancibia et al., Opportunities for evaluation of AWRA-L using global datasets  

2.3. Surface radiation 

Global gridded radiation data sets, including incoming shortwave (SWdown) and longwave (LWdown) radiation, 

are available from satellite sensors and reanalysis. Existing literature shows that SWdown and LWdown derived 

from satellite data have generally smaller biases than reanalysis because they are more constrained by 

observations of atmospheric transmissivity (e.g. cloud cover) ( Betts et al., 2006). The International Satellite 

Cloud Climatology Project produced a global radiative flux data set (ISCCP-FD) on a 3-hourly, 280 km 

resolution for the period 1983�2006.  Comparison of ISCCP-FD SWdown with the Baseline Surface Radiation 

Network (BSRN) data (Ohmura et al., 1998) revealed a mean difference of 2 Wm-2 and an RMSE error of 19 

Wm-2 (Zhang et al., 2004).  More recently, the GEWEX Surface Radiation Budget (GEWEX-SRB) Project 

has constructed a 24.5-year (July 1983 to December 2007) data set of surface SWdown and LWdown radiative 

fluxes (Stackhouse et al., 2011). GEWEX SRB release 3.0 is produced on a 1º and 3-hourly resolution using 

satellite-derived cloud parameters and ozone fields, reanalysis meteorology, and a few other ancillary data 

sets. Validation of monthly average downward SWdown and LWdown fluxes with BSRN sites mean bias for 

SWdown fluxes is ~-4 W m-2 with an RMSE difference of 23 W m-2. An examination of individual sites 

showed that most of this underestimation arose at polar sites; especially those located on the Antarctic   coast, 

but these are much improved over previous versions (Stackhouse et al., 2011). Corresponding bias for the 

LWdown fluxes are only about -0.1 W m-2 with an RMSE difference of 11 W m-2. 

The Earth"s Radiant Energy System Radiative Fluxes and Clouds instrument (CERES-FSW) provides SWdown 

and LWdown ßuxes on a 1º and daily resolution. Gupta et al. (2004) evaluated instantaneous-footprint SWdown 

and LWdown ßuxes from January-August 1998 against high quality ground-based radiometric measurements 

from several sites of the BSRN data set. For this instantaneous�footprint SWdown ßuxes had signiÞcant biases 

in some sites, and random errors were much larger than acceptable values. 

Gui et al. (2010) compared 3-hourly or hourly (when available) SWdown measurements for the period 2000�

2002 from ISCCP-FD, GEWEX-SRB and CERES-FSW SWdown against 36 stations from five different 

ground measurement networks. Results showed that SRB met accuracy criteria in most regions, followed by 

FD and FSW. Both SRB and FD underestimated SWdown in the Tibetan Plateau and Greenland and had large 

biases and overestimation in Southeast Asia. In addition, FD had slight overestimation in the Amazon. FSW 

had low correlations, had large biases and overestimates ground measurements in the Tibetan Plateau and 

Southeast Asia, as well as large overestimation in North America and the Amazon. The Princeton Global 

Forcing data set (PGF) SWdown adjusts the systematic biases in NCEP-NCAR data using the GEWEX-SRB 

climatology and a historic cloud data set. 

3. IMPLEMENTATION OF W3RA AND DATA EVALUATION AGAINST GRDC COMPOSITE 

RUNOFF DATA 

A global version of the Australian Water Resources Assessment system Landscape model (AWRA-L) 

(version 0.5; Van Dijk and Renzullo, 2011) was implemented on a 1° grid cell resolution, referred to here as 

the "World-Wide Water Resources System# (W3RA). Bias-corrected Princeton Global Forcing (PGF) 

precipitation, incoming short wave radiation; minimum and maximum daily temperature and air pressure data 

were used as meteorological inputs. The parameters used in W3RA were derived from observations in 

Australia through analysis performed as part of development of AWRA-L or derived from literature. 

Baseflow coefficient was estimated using relationships found in a global analysis of baseflow recession 

(Peña-Arancibia et al., 2010). This version of the model included two hydrological response units (HRUs): 

deep-rooted tall vegetation (forest) and shallow-rooted short vegetation (herbaceous). In each HRU, the 

model simulates the water balance on three soil stores (top, shallow and deep soil compartment) whereas 

groundwater and surface water are simulated at catchment scale. In addition, the HBV-96 snow hydrology 

module was included to simulate snowmelt and snow accumulation (Bergström and Singh, 1995). To 

represent each HRU, the 0.05° resolution vegetation continuous fields derived from MODIS reflectance data 

(2000!2001) (Hansen et al., 2003) was aggregated to a 1° grid cell resolution land/sea mask. Other data sets 

used to parameterise the model included an albedo climatology derived from white-sky albedo (Moody et al., 

2005) and wind speed climatology (1983!1993) from NASA. The model warm-up used the full 61 years of 

the PGF data (1948!2008), the model was then rerun using the states reached at the end of 2008. This was 

done due to the long time (around three decades) needed for deeper soil stores in arid regions to reach 

dynamic equilibrium.  

As a preliminary evaluation of the W3RA estimates, the climatology (1950!1979) of quasi-global blended 

modeled runoff and river streamflow observation station network (Fekete et al., 2002) was used as baseline 

to evaluate W3RA runoff results over the same time-period. To produce spatially distributed runoff, 

simulated runoff above a gauging station was scaled using correction coefficients to match river streamflow. 
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4. PRELIMINARY RESULTS 

 

Figure 1a and b show the spatial distribution of W3RA and the GRDC composite mean annual log-scaled 

runoff for the period 1950�1979 respectively. Spatial patterns are captured particularly well in the humid 

tropical areas and North America, whereas W3RA produces lower runoff estimates in Europe and parts of 

northern Asia and higher runoff in very arid areas. Computed mean values across the latitude band 70°N�

50°S show that W3RA performs better in latitudes above 0°N and overestimates runoff in lower latitudes 

(Fig. 1c). This overestimation may be related to a higher number of streamflow stations with better accuracy 

in northern latitudes (see Hong et al., 2008). The landmass above 70°N was not used in comparisons since 

there were no GRDC composite runoff data.  Mean annual runoff was 310 (±225) mm y-1 for W3RA and 345 

(±270) mm y-1 for GRDC composite runoff. Correlation coefficient (R2) and relative bias were 0.87 and -

10% respectively. W3RA produces streamflow estimates that are higher than GRDC estimates for arid areas 

in the southern hemisphere. It is noted that the W3RA estimates should be interpreted as local catchment 

runoff, whereas the GRDC data are scaled to conform to river flows observed at the end of large catchments 

and therefore implicitly include river losses. This may explain the discrepancy for arid zones, where closed 

catchments are common and internal catchment losses considerable, e.g. in the Australian interior. 

 

 

Figure 1. (a) Mean annual log-scaled runoff from W3RA for the period 1950�1979. (b) Mean annual log-scaled runoff 

from GRDC composite fields (1950�1979). (c)  Mean latitudinal profiles comparing W3RA (blue) and GRDC (red). 

Means are computed by assigning a value of 0 to ocean cells in order to avoid deviations for latitude bands with few 

terrestrial cells. 

5. SUMMARY AND FURTHER MODEL EVALUATION 

We reviewed published studies of satellite-derived, reanalysis and gauge-based data with global or near-

global coverage and which are routinely used in hydrological modelling. Satellite-based rainfall performed 

better during warm seasons and in the tropics, capturing large events better than reanalysis, although 

overestimating total rainfall. Daily satellite-based rainfall estimates generally missed light precipitation and 

the amount of false precipitation also gets exceedingly large sometimes, especially for winter. Gauge bias-

corrected TRMM 3B42V6 reduced observed bias in many areas globally, however large discrepancies still 

exists in areas with complex topography. Reanalysis data outperformed satellite-based rainfall during winter 

and in higher latitudes. In this respect, a blending approach may enhance rainfall quality estimates on a 

global scale, using rainfall from reanalysis in higher latitudes and satellite estimates such as TRMM 3B42V6 

in mid-latitudes. 

Monthly, annual and climatological Ta anomalies from aggregated daily estimates had very similar values in 

most reanalysis data sets including both ERA reanalysis, JRA-25 and NCEP-NCAR; when compared to the 

observational network HadCRUT3, with both ERA and JRA-25 having a closer agreement to HadCRUT3 
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than NCEP-NCAR. At the daily scale, compared daily maximum and minimum Ta probability density 

functions from ERA-40, JRA-25 and NCEP-DOE were dissimilar with large regional differences, but overall 

no reanalysis showed more skill than the other two when compared against regional observational 

temperature data. 

Surface shortwave radiation SWdown derived from satellite data have generally smaller biases than reanalysis 

because they are more constrained by observations. Of the three satellite-based incoming shortwave radiation 

estimates, GEWEX-SRB appeared superior to the other two.  Globally, the biases in the climatology of the 

re-analyses are significant, more for NCEP-DOE than ERA-40. 

The 60 year (1948�2008) Princeton Global Forcing (PGF) dataset with a spatial resolution of 1º and daily 

time step was considered an adequate compromise for trial simulations. PGF, based on the NCEP/NCAR 

reanalysis, used many of the data described above to constrain and reduce bias of its meteorological 

variables. W3RA was parameterized with the same set of parameters used in AWRA-L expect for baseflow 

coefficient, which was derived from a global analysis of baseflow recession. The prototype W3RA global 

hydrological model produced encouraging runoff estimates without substantially modifying the model 

structure or the parameters that were used to simulate the water balance for Australian conditions. Runoff 

corresponded closely to a blended data comprised of observations and modeled runoff.  

Further model evaluation against streamflow will be performed using carefully quality-controlled global data 

sets of streamflow from small and unimpaired catchments (e.g. Peña-Arancibia et al., 2010). W3RA soil 

moisture estimates will be evaluated against a collated international data set of in situ measurements (Dorigo 

et al., 2011), and evapotranspiration estimates will be evaluated against a set of high quality FLUXNET site 

measurements covering a variety of ecosystems (cf. Miralles et al., 2011). 
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ABSTRACT

Precipitation estimates from reanalyses and satellite observations are routinely used in hydrologic

applications, but their accuracy is seldom systematically evaluated. This study used high-resolution

gauge-only daily precipitation analyses for Australia (SILO) and South and East Asia [Asian

Precipitation—Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE)]

to calculate the daily detection and accuracy metrics for three reanalyses [ECMWF Re-Analysis Interim

(ERA-Interim), Japanese 25-yr Reanalysis (JRA-25), and NCEP–Department of Energy (DOE) Global

Reanalysis 2] and three satellite-based precipitation products [Tropical Rainfall Measuring Mission

(TRMM) 3B42V6, Climate Prediction Center morphing technique (CMORPH), and Precipitation

Estimation from Remotely Sensed Imagery Using Artificial Neural Networks (PERSIANN)]. A depth-

frequency-adjusted ensemble mean of the reanalyses and satellite products was also evaluated. Re-

analyses precipitation from ERA-Interim in southern Australia (SAu) and northern Australasia (NAu)

showed higher detection performance. JRA-25 had a better performance in South and East Asia (SEA)

except for the monsoon period, in which satellite estimates from TRMM and CMORPH outperformed

the reanalyses. In terms of accuracy metrics (correlation coefficient, root-mean-square difference, and

a precipitation intensity proxy, which is the ratio of monthly precipitation amount to total days with

precipitation) and over the three subdomains, the depth-frequency-adjusted ensemble mean generally

outperformed or was nearly as good as any of the single members. The results of the ensemble show that

additional information is captured from the different precipitation products. This finding suggests that,

depending on precipitation regime and location, combining (re)analysis and satellite products can lead to

better precipitation estimates and, thus, more accurate hydrological applications than selecting any single

product.

1. Introduction

The accuracy of precipitation estimates to a great

extent determines the accuracy of hydrological model

outputs (Fekete et al. 2004; Fernandes et al. 2008; Voisin

et al. 2008; Pan et al. 2010; Getirana et al. 2011; VanDijk

and Renzullo 2011; Yong et al. 2012). Gridded precip-

itation analysis based on gauging can be of dubious
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quality in areas where gauge or radar networks do not

exist or are sparse, for example, in much of the tropics.

Several precipitation estimates derived from satellite

data or modeled through retrospective weather forecast

model analysis (reanalysis) provide estimates that are

independent from gauge networks. Both types of pre-

cipitation estimates have being increasingly used in hy-

drological applications [e.g., for reanalysis (Dedong

et al. 2007; Li et al. 2009; Yan et al. 2010; Miguez-

Macho and Fan 2012) and for satellite (Shrestha et al.

2008; Behrangi et al. 2011; Khan et al. 2012; amongmany

others)].

Previous studies evaluating reanalyses and satellite

precipitation estimates in areas with dense gauge or

radar coverage suggest that convective precipitation

(more typical of warmer seasons and lower latitudes) is

better characterized by satellite precipitation, whereas

frontal system precipitation (more typical of cooler

seasons and higher latitudes) is better characterized by

reanalysis (e.g., Gottschalck et al. 2005; Ebert et al. 2007;

Ruane and Roads 2007; Tian et al. 2009; Sapiano and

Arkin 2009; Vila et al. 2010). Estimates from these

products can be very different, particularly over tropical

areas with high precipitation (Bosilovich et al. 2008;

Tian and Peters-Lidard 2010). The incorporation of rain

gauge data to correct magnitudes and frequencies can

reduce total errors and bring the intensity distribution

for heavy precipitation closer to the gauge data (Ebert

et al. 2007). It is also noted that more recent reanalyses

have improved precipitation estimates for tropical areas,

although notable biases still exist (Betts et al. 2006, 2009;

Bosilovich et al. 2008; Uppala et al. 2007).

The above summary suggests that reanalysis and sat-

ellite datasets can be complementary. This would be

particularly relevant in areas where adjustments are dif-

ficult or impossible because of the scarcity of rain gauge

networks. The aims of this paper are to 1) evaluate and

compare daily satellite and reanalysis precipitation esti-

mates routinely used in large-scale hydrologic model

applications against precipitation analysis based on dense

ground networks in Australia and South and East Asia

and 2) evaluate and compare a depth-frequency-adjusted

ensemblemean of the products (see definition in section 2

below). The performance metrics are chosen to establish

which precipitation product performs best for detection

(occurrence) and estimation accuracy for daily pre-

cipitation (i.e., how close to the observed magnitude and/

or frequency) in three subdomains with different pre-

cipitation regimes. Section 2 introduces the reanalyses,

satellite, and evaluation precipitation datasets and per-

formance metrics. Section 3 presents results of the per-

formance evaluation experiments. Section 4 discusses

the results and draws conclusions.

2. Data and methodology

Three recent reanalysis precipitation datasets with

global coverage are considered in this paper: 1) the Na-

tional Centers forEnvironmental Prediction–Department

of Energy Global Reanalysis 2 (NCEP–DOE; Kanamitsu

et al. 2002), 2) the European Centre for Medium-Range

Weather Forecasts (ECMWF) Re-Analysis Interim

(ERA-Interim; Dee et al. 2011), and 3) the Japanese

25-yr Reanalysis (JRA-25; Onogi et al. 2007). These

reanalyses build and improve on earlier reanalysis ver-

sions by improving the forecasting model physics and

incorporating new satellite and other conventional data.

Also included are three quasi-global satellite-based

precipitation products that combine multiple microwave

and infrared sensors: 1) the bias-corrected Tropical Rain-

fall Measuring Mission (TRMM) Multisatellite Precip-

itationAnalysis (Huffman et al. 2007) 3B42V6, which uses

monthly gauge observations to scale precipitation esti-

mates; 2) the Climate Prediction Center (CPC) morph-

ing technique (CMORPH; Joyce at al. 2004); and 3) the

Precipitation Estimation from Remotely Sensed Im-

agery using Artificial Neural Networks (PERSIANN;

Sorooshian et al. 2000).

An ensemble of the six products was derived by cal-

culating the simple mean daily precipitation and adjust-

ing it to the depth-frequency distribution function of

gauge-only daily precipitation analyses (used as evalu-

ation data) by mapping the full spatiotemporal distri-

bution of the ensemble estimates to that of the gauge

analysis. In other words, if prob* 5 prob(Pens,i) is the

probability of the ensemble mean precipitation Pens on

day i, then the depth-frequency-adjusted precipitation

estimate Padj is Padj 5 Pobs(prob*), with Pobs being the

gauge analysis time series used. The adjustment is per-

formed using all daily data for the grid cells selected

from the gauge analysis products; consequently, the

ensemble is not fully independent of the evaluation data.

The evaluation is performed at a daily temporal scale

using two high-resolution gauge-only daily precipitation

analyses available in Australia (SILO; Jeffrey et al.

2001) and South and East Asia [Asian Precipitation—

Highly-Resolved Observational Data Integration To-

wards Evaluation (APHRODITE; Yatagai et al. 2012)].

All data were resampled to 18 resolution (simple aver-

aging) as a compromise between the spatial resolutions

of the different products (satellite estimate resolution

data were 0.258, whereas reanalyses ranged from 0.78 to

2.58). Only grid cells with a density of more than one gauge

per 500 km2 were considered (see Fig. 1 for location of the

grid cells). The common period for all data was 2003–07,

and the time series of each precipitation product had less

than 5%of dayswith no data.A threshold of 1 mm day21
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was used to discriminate between ‘‘rain’’ and ‘‘no rain’’ in

order to eliminate very light intensity ‘‘drizzle’’ that does

not significantly contribute to daily precipitation but

could have an undue impact on detection metrics. To

account for differences in precipitation regime, the geo-

graphical domainwas divided into three regions: southern

Australia (SAu), mostly dominated by synoptic system

precipitation during austral winter; northern Australasia

(NAu), mostly dominated by convective precipitation

during summer; and South and East Asia (SEA), mostly

dominated by monsoon precipitation.

First, precipitation bias error estimates on annual and

monthly time scales are computed following Adler et al.

(2012). The standard deviation s of the six products is

used as a measure of the bias error. The dispersion among

the product estimates captured in s showcases the dif-

ferent physical assumptions and nature of both satellite

and reanalyses precipitation retrievals. Subsequently, de-

tection and accuracy metrics were computed for each grid

cell. Every day in the estimated and gauge analysis was

classified following Ebert et al. (2007) as a hit (H, observed

precipitation correctly detected), miss (M, observed pre-

cipitation not detected by product), or false alarm (F, pre-

cipitation detected but none observed). The probability of

detection, POD 5 H/(H 1 M), gives the fraction of pre-

cipitation occurrences correctly detected (range 0–1

and a perfect score of 1). The false alarm ratio, FAR5 F/

(H 1 F), gives the wrongly detected precipitation (range

0–1 and a perfect score of 0). The frequency bias, FB5 (H

1 F)/(H1M), gives the ratio of the estimated to observed

precipitation frequency (range 0–‘ and a perfect score

of 1). The equitable threat score (ETS), used as an overall

performance metric, gives the fraction of precipitation that

was correctly detected, adjusted for correct detections (He)

that would be expected because of random chance: ETS5

(H2He)/(H1M1 F2He), whereHe 5 (H1M)(H1

F)/N andN is the total number of estimates (range21/3–1,

a perfect score of 1 and 0 indicating no skill).

Accuracy metrics used were correlation r, root-mean-

square difference (RMSD), and a precipitation intensity

proxy, namely, the percentage difference of the ratio of

monthly precipitation amount to the total number of

days with precipitation (MPDR). Both detection and

accuracy metrics were mapped for spatial patterns and

examined. Results were also stratified by season to assist

in interpretation. Finally, monthly and subdomain aggre-

gated time series were plotted to detect any evidence for

drifts or step changes.

3. Results

The mean annual precipitation of the six precipitation

products used here is shown in Fig. 1a. The measure of

the bias error, the mean annual precipitation standard

deviation s of the products, is shown in Fig. 1b. As ex-

pected, higher s values occur in grid cells with higher

precipitation, with the highest values (.1500 mm yr21)

occurring in grid cells located in the intertropical con-

vergence zone (ITCZ), particularly in insular Southeast

Asia. The mean annual s in SEA is 554 mm yr21,

whereas it is 324 and 170 mm yr21 in NAu and SAu,

respectively. Themonths of January and July are used as

an example ofmonthly bias. The ITCZmoves southward,

and during January grid cells in northern Australia have

the highest precipitation (.200 mm month21) and s

(.100 mm month21) (Figs. 1c,d). The mean January

s in SEA is 26 mm yr21, whereas it is 76 and 15 mm yr21

in NAu and SAu, respectively. In July, the ITCZ shifts

northward, andmany grid cells in SEAare affected by the

Asia–Pacific monsoon, with higher July precipitation

occurring in grid cells in Japan, Nepal, southern China,

and Southeast Asia (.400 mm month21) (Fig. 1e).

Higher July s (.100 mm month21) is observed not only

in these grid cells, but also in southwest Australia and

Tasmania (Fig. 1f).

Figure 2 shows percentage frequency of exceedance

curves for the six products (for daily precipitation.1 mm),

the simple ensemble mean, and the depth-frequency-

adjusted ensemble (data are aggregated over the whole

geographical domain). All satellite products have lower

frequencies than the reference for mean precipitation

depths ,10 mm day21, whereas reanalyses agree rea-

sonably well (Fig. 2a). The exceptions are NCEP–DOE,

which exceeds reference depths almost across the range,

and the simple ensemble mean, in which the simple

averaging of all products enhances light precipitation

depths (Fig. 2a). Conversely, only the bias-corrected

TRMM 3B42V6 and the depth-frequency-adjusted en-

semble show good agreement for mean precipitation

depths .50 mm day21 (Fig. 2b). Not surprisingly, the

depth-frequency-adjusted ensemble shows this good

agreement across the whole precipitation depth range.

In terms of ETS computed for the full time series,

ERA-Interim performed best in SAu and parts of NAu

close to SAu (Fig. 3a). NCEP–DOE performed best in

parts of western and southern Australia, and JRA-25

performed best in most of Japan and South Korea.

CMORPH and TRMM performed best in Southeast

Asia. Results in continental Asia were mixed, with sat-

ellite products and the ensemble performing best in the

tropics and reanalyses performing best in midlatitudes.

From June to August (JJA), satellite data and the en-

semble performed best in most of continental and

southeast Asia and in areas in Japan most affected by the

monsoon (Fig. 3b). JRA-25 and the ensemble generally

performed best in December–February (DJF), except in
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insular Southeast Asia, where satellite products out-

performed reanalyses and the ensemble (Fig. 3c).

Box plots in Fig. 4 highlight the superior detection per-

formance of reanalyses for all geographical subdomains,

with the exception of JJA (monsoon) in SEA (Figs. 4a–c).

ERA-Interim performs better than satellite data in NAu

during DJF. The ensemble shows performance somewhat

intermediate to both product types. Seasonal varia-

tion in performance was not observed in SAu, but

there was an improvement in CMORPH and TRMM

ETS during DJF in NAu (Fig. 4b). In SEA, ETS for

ERA-Interim and JRA-25 were higher than satellite,

except for JJA, where CMORPH and TRMM were

better (Fig. 4a).

In terms of accuracy metrics, the spatial results did not

show clear seasonal variations; thus, results are presented

for all months combined. For r, JRA-25performed best in

most of southeast and parts of southwest Australia,

FIG. 1. (a)Mean precipitation and (b) standard deviation for the ensemble of the six precipitation products used in this study (not including

the ensemble) for the years 2003–07. (c),(d) As in (a),(b) but for all January months. (e),(f) As in (a),(b), but for all July months.
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whereas NCEP–DOE did so in parts of southern Aus-

tralia, Tasmania, and southwest Australia (Fig. 5a).

ERA-Interim performed best in north Australia,

whereas a combination of satellite and the ensemble

performed best in the tropics. Box plots for all months

show that r for ERA-Interim in both SAu andNAuwere

better than for satellite precipitation, with higher r for

NAu (Fig. 6a). The ensemble performed best in Nepal,

close to the coastline in China, and in part of Japan.

JRA-25 and ERA-Interim had better performance in

inland north China and also in some parts of Japan. For

SEA, mean r is substantially higher (0.62) than in SAu

(0.17) and NAu (0.35), with TRMM being superior and

CMORPH comparable to JRA-25 and ERA-Interim

(Fig. 6a). The ensemble outperformed the other prod-

ucts in all subdomains.

ERA-Interim had the lowest RMSD in most of SAu

and NAu (Fig. 5b). In China, satellite data generally

performed best close to the coastline and reanalyses in

the north, the ensemble in Nepal, and JRA-25 in most of

Japan and South Korea. Box plots show that RMSDwas

slightly lower for ERA-Interim and JRA-25 in all

subdomains. Errors in NCEP–DOE were systemati-

cally higher than the other datasets, whereas the en-

semble RMSD was comparable to the best results in all

subdomains (Fig. 6b).

MPDR results in SAu and NAu were mixed, but

overall, the best performer was JRA-25, followed by the

FIG. 2. (a) Percentage frequency of exceedance curves for daily precipitation (.1 mm) aggregated over the whole

geographical domain. (b) As in (a), but the x axis is zoomed-in for higher mean precipitation depths.

FIG. 3. Best performing product for estimating the occurrence of daily precipitation (.1 mm) in terms of the ETS for 2003–07 in each grid

cell: (a) for all months, (b) for JJA, and (c) for DJF. Rectangles in (a) define the geographical extent for SAu, NAu, and SEA.
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ensemble and ERA-Interim (Figs. 5c, 6c). Results were

mixed in Japan. In China, satellite products and the

ensemble generally performed best inland, whereas

JRA-25 did so close to the coastline (Fig. 5c). Generally

(besides NCEP–DOE), all products had less that 20%

difference with observed MPDR with the exception of

CMORPH and PERSIANN in SEA, which under-

estimatedMDPRby 22%and 23%, respectively (Fig. 6c).

ERA-Interim and PERSIANN systematically under-

estimated and TRMM and NCEP–DOE systematically

overestimated MPDR (Fig. 6c).

Time series of monthly averaged ETS over the whole

domain showed some seasonal variation, with an in-

crease roughly during JJA andDJF, and a step change to

reduced ETS for PERSIANN precipitation after 2005

(Fig. 7a). No clear patterns are evident for reanalysis

data. The same step change in PERSIANN is present in

the r time series, with again no obvious patterns for the

other precipitation datasets (Fig. 7b). An analysis of

PERSIANN FAR and POD over the subdomains

revealed that an increase in false detections in SAu and

a decrease in correct detections in SAu and SEA were

the cause for the step change (not shown). This likely

affected r, but only for small precipitation depths, as

RMSD and MPDR appear not much affected. For all

products, RMSD time series showed an increase in

errors during JJA and less so during DJF, with NCEP–

DOE having the largest errors (Fig. 7c). NCEP–DOE

and, surprisingly, the bias-corrected TRMM produced

high positive MPDR values through the analysis pe-

riod; CMORPH mostly produced positive values, and

the rest of the datasets mostly produced low negative

MPDR values.

Table 1 shows the product ranking for detection and

accuracymetrics over the whole geographical domain and

for all months. The depth-frequency-adjusted ensemble

mean outperformed both satellite and reanalyses for

most metrics. Among individual products, JRA-25 out-

performed the others in most metrics, but its high FB

suggested that it tends to over predict precipitation

FIG. 4. Box plots showing the performance of the estimated occurrence of daily precipitation

(.1 mm) in terms of ETS aggregated over three geographical subdomains for all months, JJA,

and DJF: (a) SEA, (b) NAu, and (c) SAu. Tops and bottoms of each box are the 25th and 75th

percentiles and whiskers are the 5th and 95th percentiles, respectively.
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occurrence. CMORPH agreed better with observed

MPDR; however, this is possibly because of compen-

sating underprediction in SEA and overprediction in

SAu and NAu (Fig. 6c).

4. Discussion and conclusions

Three reanalyses (ERA-Interim, JRA-25, and NCEP–

DOE) and three satellite-based precipitation products

FIG. 5. Best performing product for accuracy statistics of daily precipitation (.1 mm) for 2003–07 in each grid cell: (a) correlation,

(b) RMSD (mm day21), and (c) MPDR (%).

FIG. 6. Box plots showing accuracy statistics of daily precipitation (.1 mm) aggregated over

three geographical subdomains: (a) r, (b)RMSD, and (c)MPDR.Tops and bottoms of each box

are the 25th and 75th percentiles and whiskers are the 5th and 95th percentiles, respectively.
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(TRMM 3B42V6, CMORPH, and PERSIANN) were

systematically evaluated, along with a depth-frequency-

adjusted ensemble of the products, against analysis data

in relatively well gauged areas inAustralia and South and

East Asia. Large bias errors (in terms of standard de-

viation of the products) indicated areas inwhich choice of

precipitation estimates used in hydrologic applications

should be carefully considered. Bias errors were large in

some areas of high precipitation, such as the ITCZ, and

also in high latitudes during winter months (southern

Australia and Tasmania).

Analysis of precipitation ETS showed that reanalyses

generally outperformed satellite precipitation estimates

in all subdomains, except for JJA in SEA, that is, the

months affected by the Asia–Pacific monsoon (Fig. 4a)

(Wang and LinHo 2002). This was expected because of

the better capability of satellites to detect convective

precipitation. The seasonal patterns observed in SAu

are consistent with those reported by Ebert et al. (2007)

and are attributed to the capabilities of reanalyses to

capture synoptic precipitation (Fig. 4c). Reanalysis ETS

in NAu outperformed satellite on an annual basis, and

surprisingly, ERA-Interim was better than satellite

precipitation during DJF and JJA. Ebert et al. (2007)

attributed the better performance of reanalysis in NAu

during JJA to remnant frontal systems brought in from

midlatitudes or orographic lifting of moist ocean air

during this season.Additional cause for better reanalysis

performance in JJA and DJF may be due to the many

grid cells in NAu close to SAu (Fig. 3a). Similar results

FIG. 7. Monthly time series for 2003–07 of (a) ETS, (b) r, (c) RMSD, and (d) MPDR averaged

over the entire geographical domain.
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to those of ETSwere observed for r, where the ensemble

showed an equal or superior performance. Its ETS

values were between both types of products because of

the lower POD of satellite products especially during

winter months (Tian et al. 2009). RMSD was similar for

all products, with the exception of NCEP–DOE, which

had a higher RMSD (particularly in NAu and SEA).

NCEP–DOE also had higher positive MPDR than the

other products. Large positive precipitation biases in the

tropics have been reported for NCEP–DOE in other

studies as well (Fekete et al. 2004; Bosilovich et al. 2008;

Getirana et al. 2011). Surprisingly, although gauge-

scaled, TRMM had systematically higher MPDR values

in all geographical domains, and its RMSD was com-

parable to that of other satellite products. It has been

argued that monthly scaling can propagate errors over

space and time and that thesemay be reflected in RMSD

(Gao and Liu 2012). In addition, a climatological un-

dercatch correction is applied to TRMM (Huffman et al.

2007; Su et al. 2008), which is not present in precipitation

analysis used for evaluation herein. Satellite product

precipitation under or overestimation appeared to be

location dependent (e.g., Ebert et al. 2007; Nesbitt et al.

2008; Romilly and Gebremichael 2011; Vernimmen

et al. 2012), even for the gauge-scaled TRMM 3B42V6

product (Nair et al. 2009; Stampoulis and Anagnostou;

2012). Demaria et al. (2011) found that there was no

clear gain of TRMM 3B42V6 over satellite products

that are not bias corrected for precipitation exceeding

30 mm day21. They also showed that TRMM 3B42V6

would not necessarily improve estimates in areas with

sparse gauges or if scaling introduces gauge data noise.

Furthermore, because of data provider policies, it is not

possible to know if some of the gauges used to calibrate

TRMM 3B42V6 are also part of the analysis data used

here (Scheel et al. 2011).

Over all months combined and over the whole geo-

graphical domain, reanalysis outperformed satellite data

on detection metrics and agreement metrics. Our results

did, however, confirm the strength of satellite data in

detecting and estimating convective precipitation.

By combining reanalyses and satellite products in an

ensemble, known strengths of both retrieval systems

resulted in a reduction of system-specific and random

errors (e.g., Bosilovich et al. 2009). Issues associated

with simple averaging of the products, such as a large

bias in precipitation area and a corresponding reduction

inmean andmaximumprecipitation depth (Ebert 2001),

were addressed using a procedure that adjusts the pro-

bability distribution of the ensemble to the observed

precipitation depth frequency. Although the depth-

frequency-adjusted ensemble is not fully independent

of the evaluation data, our results provide strong evi-

dence that the inclusion of gauge information is valuable

by adjusting both high and low precipitation depths. The

dependence was limited, since the adjustment was per-

formed over the whole geographical domain rather than

by region or even by grid cell. An adjustment by sub-

domain or climate type could well improve estimates

even further.
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TABLE 1. Performance ranking of detection and accuracy metrics of precipitation products aggregated over the geographical domain,

including means and standard deviations (in parentheses) of ETS, POD, FAR, FB, r, RMSD, and MPDR. Refer to section 2 for the

definition of the metrics.

Rank

1 2 3 4 5 6 7

ETS Ensemble JRA-25 Era-Interim TRMM 3B42V6 NCEP–DOE CMORPH PERSIANN

0.30 (60.05) 0.29 (60.05) 0.29 (60.06) 0.27 (60.05) 0.24 (60.04) 0.23 (60.06) 0.13 (60.04)

POD Ensemble JRA-25 ERA-Interim NCEP–DOE TRMM 3B42V6 CMORPH PERSIANN

0.62 (60.09) 0.62 (60.09) 0.62 (60.08) 0.55 (60.07) 0.52 (60.07) 0.49 (60.08) 0.36 (60.07)

FAR ERA-Interim Ensemble TRMM 3B42V6 JRA-25 NCEP–DOE CMORPH PERSIANN

0.40 (60.06) 0.41 (60.07) 0.41 (60.09) 0.42 (60.06) 0.42 (60.07) 0.42 (60.10) 0.54 (60.09)

FB Ensemble TRMM 3B42V6 JRA-25 NCEP–DOE PERSIANN CMORPH ERA-Interim

0.09 (60.46) 0.09 (60.11) 0.13 (60.14) 0.13 (60.17) 0.22 (60.23) 0.23 (60.21) 0.25 (60.33)

r Ensemble JRA-25 ERA-Interim TRMM 3B42V6 CMORPH PERSIANN NCEP–DOE

0.46 (60.09) 0.43 (60.08) 0.42 (60.08) 0.41 (60.09) 0.35 (60.10) 0.22 (60.23) 0.33 (60.17)

RMSD Ensemble TRMM 3B42V6 ERA-Interim JRA-25 CMORPH PERSIANN NCEP–DOE

6.43 (61.3) 6.56 (61.6) 6.60 (61.6) 6.62 (60.08) 6.68 (60.10) 7.54 (61.6) 10.7 (62.5)

MPDR CMORPH ERA-Interim Ensemble JRA-25 PERSIANN TRMM 3B42V6 NCEP–DOE

21.3 (612.2) 23.0 (68.10) 24.9 (67.98) 5.33 (610.90) 27.80 (611.8) 10.2 (66.97) 42.8 (613.3)
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providing valuable comments and suggestions. Tim also

provided formatted Australian gauge and satellite data

later used in this study.
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Appendix D - Other simulated processes in W3RA-LUM

This appendix provides a detailed description of some of the remaining processes and 

corresponding equations that were not included in the main body of the chapter. These were not 

modified as part of the implementation of W3RA-LUM and the description is taken from Van Dijk 

(2010a). Most of the equations used for the energy balance and to obtain potential 

evapotranspiration (E0) are sourced from the published literature and are based on well-

established theory and estimation methods (with few exceptions). Their inclusion here will 

unnecessarily extend the length of the Appendix due to the many variables, constants and 

intermediate equations. Appendix D1 describes the remaining components of the soil water 

balance. Appendix D2 details the vapour fluxes. Finally, Appendix D3 describes the vegetation 

phenology processes, i.e., canopy changes related to water availability. The reader is referred 

to Van Dijk (2010a) for the description of the energy balance.  

D1. Soil water balance 

D1.1 Root water uptake (U) 

Total root water uptake (U) equals total transpiration Et (see Appendix D2.2). Et is assumed to 

originate preferentially from roots that experience the lowest matrix potential difference with the 

surrounding soil, and is limited by the maximum root water uptake from each layer (see 

Appendix D2.4). 
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where SD is deep soil water storage (mm), SS is shallow soil water storage (mm), U is total 

actual root water uptake (mm d-1), UD is actual root water uptake from deep soil (mm d-1), UD max

is maximum root water uptake from deep soil (mm d-1), US is actual root water uptake from 

shallow soil (mm d-1), USmax is maximum root water uptake from shallow soil (mm d-1). 

D1.2 Capillary rise (Y) 

Capillary rise accounts for upward water movement between the groundwater storage and the 

deep soil storage due to water extraction in the root zone. In the absence of influx from the 

overlying soil layer, and in the presence of a groundwater table sufficiently nearby, water 

extraction in the root zone will disrupt the equilibrium soil moisture profile, causing groundwater 

to move into the unsaturated zone to restore equilibrium. This process may be important to 

sustain transpiration from deep-rooted evergreen vegetation in areas with seasonal 

precipitation. The water exchange would depend on: depth of water uptake, depth to the 

groundwater table and hydraulic conductivity in the unsaturated zone between roots and 

groundwater table. These properties are seldom known. A simple conceptualisation describes 

two extreme and intermediate situations depending on the connectivity between soil and 

groundwater (FDG). If FDG is equal to unity (strong connection), water from the deep soil store is 

immediately replaced by groundwater. If FDG is equal to zero (no connectivity) the deep soil 

store is only replenished by drainage form the shallow soil store. For values in between zero 

and unity, capillary rise occurs but does not re-establish the equilibrium profile. Capillary rise is 

not estimated for the HRU with shallow rooted vegetation since there is no root water uptake 

from the deep soil store. 

( ) gDDDG SwwFY −= lim ,    if wD < wlimD     D-3 

0=Y .     if wD � wlimD     D-4 

Where Y capillary rise of groundwater into deeper root zone (mm), wD is relative deep root zone 

water content (dimensionless) and Sg is groundwater reservoir storage (mm).    



 The parameter FDG interacts with the choice of maximum deep root water uptake rate 

(Appendix D1.1). As a default, it is assumed that the groundwater table is sufficiently close so 

that root water uptake from the deep soil layer can be replaced by capillary rise and therefore 

FDG may be prescribed a value of unity. 

D1.3 Streamflow (Qstream) 

Total streamflow discharge is estimated similarly to groundwater discharge using a linear 

reservoir. The aims of this conceptualisation is to delay storm flow drainage normally observed 

in all but small and fast-responsive catchments; and provide a transient storage of surface water 

in the landscape subjected to open water evaporation (see Appendix D2.7).  

( )[ ] rrstream SKQ −−= exp1 ,        D-5 

where Qstream is streamflow discharge from catchment (mm d-1) and Sr is the aggregate depth of 

storage in freely draining surface water stores (mm). 

The streamflow drainage coefficient (Kr) was estimated using streamflow from 260 Australian 

catchments, the average value was 0.77 and 805 of values were between 0.5 and 1.1. (Van 

Dijk, 2010c). It was related to potential ET (E0) as follows: 

284.0141.0 0 += EKr          D-6 

This relationship explained 23% of the variance in Kr. The relationship suggests that storm flow 

in drier catchments travels faster than in wet catchments, which is related to storm flow 

produced via infiltration excess overland flow typical of drier catchments. 

Groundwater discharge (baseflow) is routed through this store before being converted into 

streamflow. Therefore, groundwater discharge recession is not exactly equal to the baseflow 

recession; nor is streamflow recession exactly equal to storm flow recession. The numerical 

difference will normally be negligible, because Kg and Kr will vary an order of magnitude or 

more, and because the delayed drainage of one days’ baseflow is compensated by the delayed 

drainage from the day before (Van Dijk, 2010c). 



D2. Vapour fluxes 

D2.1 Mass balance 

Total evapotranspiration E is given by: 

rgstiet EEEEEEEE ++++=+= ,       D-7 

where Et is transpiration and Ee is evaporation from all other sources, consisting of soil 

evaporation (ES), groundwater evaporation (Eg, that is, evaporation from soil saturated by 

groundwater), open water evaporation (Er), and rainfall interception evaporation (Ei).  

Transpiration (Et) is calculated in two steps: (1) maximum transpiration (Et0; defined as the 

transpiration rate that would be achieved with unlimited root water supply) and maximum root 

water uptake (U0) from all layers are estimated; (2) actual evapotranspiration (Et) is estimated 

as the lesser of the two. In formula: 

[ ]00 ,min UEE tt =          D-8 

Consistency between the sum of Et and Ee (minus Ei) versus maximum available energy (by 

potential evapotranspiration, E0) is ensured by calculating the energy available for evaporative 

fluxes (E0’) as: 

tEEE −= 0'0           D-9 

This formulation still allows total E to exceed E0 for days with precipitation; this is deliberate (see 

Appendix D2.2). The equations used to estimate the constituent fluxes are explained below. 



D2.2 Rainfall interception (Ei) 

The approach to model rainfall interception losses is based on the Gash (1979) model, with 

modifications to allow applications to vegetation with sparse canopy (Gash et al., 1995; Van Dijk 

and Bruijnzeel, 2001). An important assumption is that the ratio of wet canopy evaporation rate 

and rainfall intensity does not vary between storms. It is also assumed that the rate is 

proportional to the fraction of canopy cover. 

gVi PfE = , for P < Pwet        D-10 

( )wetERwetVi PPfPfE −+= , for P � Pwet      D-11 
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where fER is the ratio of average evaporation rate over average rainfall intensity during storms 

(dimensionless), fV is the fraction area covered by intercepting leaves (dimensionless), Pg is 

gross precipitation (mm), Pwet is reference threshold rainfall amount at the canopy is wet (mm), 

Sv is canopy rainfall storage capacity (mm) and � is leaf area index (dimensionless).  

The specific relative evaporation rate (fER0, dimensionless) can be estimated by the inversion of 

Gash-type models, which produce ratios of 0.05 to 0.25 with values around 0.2 being common 

(e.g. reviews by Gash et al., 1995; Van Dijk and Bruijnzeel, 2001). Values for fER0 of 0.05 and 

0.10 are used here as defaults for shallow- and deep-rooted vegetation, as these are assumed 

by and large equivalent with aerodynamically smooth and rough vegetation, respectively. 

Values for the specific canopy rainfall storage capacity per unit leaf area parameter (sleaf, in mm) 

can be calculated from literature and are 0.07–0.6 mm per unit LAI for most forests types, and 



0.03–0.9 mm for low vegetation (e.g. review Van Dijk and Bruijnzeel, 2001). Most reported 

values are around 0.10 mm and this is therefore used as a default value for both HRUs. 

D2.3 Maximum transpiration (Et0) 

Maximum transpiration (E0) is in accordance with a modified Penman-Monteith equation (Van 

Dijk, 2010a).  
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and 

maxsVs Gfg = .          D-17 

where Et0 is maximum transpiration (mm d-1), E0 potential evapotranspiration (mm d-1), ft is

potential transpiration fraction (dimensionless), fV is fraction canopy cover (dimensionless), ga is 

aerodynamic conductance (m s-1), gs canopy conductance (m s-1), k� is a coefficient that 

determines evaporation efficiency (dimensionless) and is � leaf area index (dimensionless). 

Aerodynamic conductance (ga) is estimated using the well-established approach of Thom (1975) 

as a function of wind speed and a roughness coefficient for use with wind measurements at 2 m 

inside climate stations. For a closed canopy, gs can be thought of as a function of maximum 

surface conductance (Gsmax in ms-1) and a scaling factor (between zero and unity) that describes 

the reduction in surface conductance as a consequence of stomatal control. Various alternative 

formulations have been developed to describe stomatal control as a function of ambient 

conditions inside the vegetation, the air around the vegetation and/or the soil water status. 

However many of these formulations were based on interpretation of real world, small scale 

experiments where correlation between potential driving factors is inevitable, due to the diurnal 

cycles in many atmospheric and plant physiological variables; correlation between soil water 



availability and atmospheric humidity; and surface-atmosphere feedback effects (e.g. Jarvis and 

McNaughton, 1986; Jones, 1998). Surface conductance gs is estimated at 15 mm s-1 for a FAO-

56 reference grass cover (Allen et al., 1998). Other studies typically find maximum gs values of 

10 to 20 mm s-1, with values of more than 30 mm s-1 for agricultural crops (Kelliher et al., 1995; 

Leuning et al., 2008). 

The parameter Gsmax is the only parameter that needs to be estimated. Corresponding to 

functional convergence theory, it has been shown that there is correlation between canopy 

photosynthetic capacity, surface conductance, specific leaf area and other plant physiological 

properties (Reich et al., 1997; 2003). 

A satellite-based (from MODIS) specific photosynthetic capacity index (PCI, expressed per unit 

canopy cover) was calculated for Australia from the Enhanced Vegetation Index (EVI, Huete et 

al., 2002) and absorbed fraction photosynthetically active radiation (FPAR, Knyazikhin et al., 1998) 

as an estimate of fraction canopy cover fV (van Dijk, 2010a). This produced values of 0.5–1.0 for 

humid tropical vegetation and greening inland grassland areas, whereas forests typically 

showed a PCI of 0.30-0.45. PCI values of 0.35 and 0.65 were used as estimates in the current 

model version for shallow-rooted and deep-rooted HRUs respectively. Comparing these with 

earlier mentioned Gsmax values suggests that it may be estimated as: 

PCIGs 03.0max = .         D-18 

D2.4 Maximum root water uptake (U0) 

The formulation used for maximum root water uptake (U0, mm d-1) assumes two important 

limitations to root water uptake: the effect of soil water availability in different layers; and that of 

root presence and hydraulic properties in different layers. The description used is very similar to 

other approaches to estimate the impact of soil water content on root water uptake (e.g.

Shuttleworth, 1992). The approach used here was chosen due to the high complexity of root 

water uptake when considering the scale of modelling, the very high spatial variability in soil 

properties, soil moisture availability and vegetation rooting depth, and the differences in rooting 

pattern and physiology between plants of different species and age. Since a unique relationship 



between matrix potential and water content is always assumed (that is, any hysteresis in the soil 

moisture retention or ‘pF’ curve is ignored), one can be expressed in terms of the other and the 

only difference will be in the exact shape of the limitation function. Given the uncertainty in the 

parameters, and given that it is unlikely that robust estimates of the parameters can be derived 

and therefore would need to be calibrated, a formulation with a minimum number of two 

additional parameters was conceptualised as follows: 

[ ]000 ,max DS UUU = ,         D-19 

with USmax and UDmax both estimated as: 
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Uzmax physiological maximum root water uptake from layer z (mm d-1), Uz0 is maximum root 

water uptake rates from layer z under ambient conditions (mm d-1) and wz relative water content 

of layer z (subscript ‘z’ is to be replaced by ‘s’ and ‘d’, respectively). The maximum root water 

uptake Uz0 would be expected to depend on the total length of fine roots, the flow resistance 

from roots to leaf, and the potential difference between plant and soil. There are currently no 

methods to estimate maximum uptake rates, but site water use observations by flux towers 

suggest that maximum daily transpiration rates do not normally seem to exceed around 6 mm d-

1 and drop to a relatively constant 1 or 2 mm d-1 for deep rooted vegetation after seasonal 

vegetation has senesced. Values adopted here for US0 were 6 mm d-1 for both HRUs, and UD0 of 

4 mm d-1, only applicable for the deep-rooted vegetation HRU. The water content wzlim at which 

root water uptake is affected can be assumed to be between 0.15 and 0.50 based on available 

pedotransfer functions (see Rawls et al., 1992). It was assumed as 0.3 for both soil layers and 

HRUs. 

D2.5 Soil evaporation (Es) 

A model comparable to the formulation of used for root water uptake using one phase of soil dry 

down was used here. Generally, three stages are considered to describe soil evaporation: 

stages (e.g. Ritchie, 1972; Allen et al., 2005): (1) evaporation from wet soil occurs at a rate that 



is approximately equal to PET; (2) once soil wetness falls below a certain threshold, evaporation 

is reduced and becomes increasingly reduced as soil moisture decreases further; and (3) below 

a certain water content soil evaporation ceases altogether. Mutziger et al. (2005) did a global 

review of published data sets and found that this approach produced realistic soil evaporation 

estimates. However, where litter, vegetation or other forms of non-evaporating material cover 

part of the soil, they will intercept radiation energy as well as increase surface roughness, and 

so reduce evaporation from the underlying soil. In addition, plant root systems can facilitate the 

transfer of deeper soil moisture to shallow soil, particularly when the top soil is very dry, through 

hydraulic redistribution (Burgess et al., 1998; Zou et al., 2005). As a consequence, top soil 

moisture content under living vegetation is unlikely to fall much below wilting point. The model 

used here combines the second and third phase of soil dry down into a single phase. This is 

done partly for convenience and simplicity, and partly because capillary rise and hydraulic 

redistribution by vegetation may well prevent this third phase from being reached. The dry down 

curve resulting from this approach is similar to that produced by the FAO recommended method 

(Allen et al., 2005) if average parameters reported by Mutziger et al. (2005) are used (not 

shown). The formulation is as follows: 

( ) ( )tsEwatersats EEfffE −−−= 01 ,        D-21 
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where E0 is potential ET (mm d-1), Et is actual transpiration (mm d-1), fsat is fraction area covered 

by saturated soil (dimensionless), fwater is fraction area covered by open water (dimensionless), 

fsE is relative soil evaporation (dimensionless) and w0 is relative top soil water content 

(dimensionless). The parameter describing relative soil evaporation when soil water supply is 

not limiting (FsEmax, dimensionless) is commonly assumed approximately equal or slightly higher 

than unity when E0 is estimated as FAO crop reference ET (Allen et al., 1998). A value less than 

unity would be expected where there is some vegetation cover, litter or other forms of surface 

cover that impedes energy to, or vapour fluxes from, the wet soil. A value of FsEmax=0.7 is 

estimated as a default, but it should be noted that this value is without much experimental 



support. Where rainfall occurs infrequently (e.g. arid environments), the assumed value is not 

expected to introduce bias, as the soil will have sufficient time to dry out between storms. 

The relative top soil water content at which evaporation is reduced (w0lim, dimensionless) may 

be expected to be somewhat higher than that at which root water uptake stops. Indeed, from the 

five studies reviewed by Mutziger et al. (2005), w0lim values of 0.60 to 0.89 can be calculated, 

with a median of 0.84. A default value of w0lim=0.85 is suggested here. 

D2.6 Groundwater evaporation (Eg) 

The model used here is the same as that used for unsaturated soil evaporation for the condition 

that w=1. 

( )TsEsatg EEFfE −= 0max ,        D-23 

where Eg  is groundwater evaporation (mm d-1), E0 is potential ET (mm d-1), is Et actual 

transpiration (mm d-1) and fsat  is the fraction of area covered by saturated soil (dimensionless). 

The soil evaporation scaling factor when soil water supply is not limiting evaporation (FsEmax, 

dimensionless) has the same meaning as that used for unsaturated soil evaporation and the 

same default value is suggested. 

D2.7 Open water evaporation (Er) 

The model formulation used is consistent with those used for the other evaporation 

components.  

( )Towwaterr EEFfE −= 0 ,         D-24 

with 

( )75.0
007.0,min rbankfullwater SFf = ,         D-25 

   



where Er is the surface water evaporation (mm d-1), E0 is potential ET (mm d-1), Et is actual 

transpiration (mm d-1), fwater is fraction of area covered by water (dimensionless) and Sr is 

streamflow storage (mm) 

The value of fwater would be expected to change dynamically in response to the volume of water 

stored in surface water bodies. There are currently no accurate predictive models available, and 

it may be expected that any relationship would vary between landscapes with different drainage 

network morphology. Based on studies of small and large, natural and man-made reservoirs 

(e.g. Lowe et al., 2005) as well as geometric considerations, the exponent of the empirical 

equation may be estimated to be between 0.5 and 1.0; a value of 0.75 is estimated based on 

the work by Lowe et al. (2005) for hillside farm dams and used as a default value. Based on the 

same study a value of 0.007 mm-1 was estimated for the coefficient (that is, fwater=0.7% of the 

landscape for Sr=1 mm). 

The fraction of area occupied by river channels (Fbankfull) is unknown, but is estimated here as 

0.5% of the landscape. The open water evaporation coefficient F0w is assumed to be equal to 

the conversion factor between potential evaporation and pan evaporation, which is usually 

estimated at 0.70 and is used as default here. 

D3. Vegetation phenology 

The vegetation phenology model simulates canopy changes in response to water availability by 

calculating the vegetation cover that could be sustained given soil moisture availability. The 

‘equilibrium’ leaf mass is estimated by considering the hypothetical leaf mass Meq that 

corresponds with a situation in which maximum transpiration rate (Et,max) equals maximum root 

water uptake (Umax). The vegetation moves towards this equilibrium state with a prescribed 

degree of inertia, representative of alternative phenological strategies.  

The model can include one or more land cover types, each defined by their fractional cover and 

properties. Currently, two land cover types are considered: deep- and shallow-rooted 

vegetation. It is assumed, compared to shallow-rooted vegetation, deep-rooted vegetation has a 

longer leaf life span, responds less rapidly to changes in water availability, and has lower 



photosynthetic capacity and stomatal conductance per unit leaf area. These expectations can 

be derived from functional convergence theory and agrees with observed relationships (Reich et 

al., 1997; Wright et al., 2004). Only the effects of water availability on vegetation phenology are 

considered in the current model version, since they will have the greatest influence on 

hydrological processes. However, other processes may regionally be more important in driving 

vegetation phenology, in particular in the humid and high elevation regions where temperature 

and day length are important variables driving vegetation phenology. Other factors limiting 

growth such as nutrient availability and salinity may impose an upper limit on the vegetation 

density that can be sustained. 

D3.1 Mass balance 

. 

( ) ( ) ( )tmtMtM LnLL +=+1 ,        D-26 

where ML is the biomass and mLn the net biomass change of living leaves (both expressed in kg 

dry matter per m2). The coupling with water balance dynamics occurs through mLn. 

D3.2 Conversion equations 
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−−=

ref
Vf exp1 ,         D-27 

with 

SLALCM=Λ ,          D-28 

where fV is canopy fractional cover and � is leaf area index. The conversion between ML and �

is strictly a dimensional one. It assumes that, by good approximation, the value of the coefficient 

of proportionality that is specific leaf area (CSLA in m2 kg-1) does not vary significantly over time 

for a particular vegetation type. This is a common assumption but obviously a simplification. The 

conversion from � to fV is described by the exponential light extinction equation (Monsi and 

Saeki, 1953) equivalent to Beer’s Law which is most commonly used for this purpose. to be 

consistent with notation elsewhere in the model, the so-called ‘light extinction coefficient’ (often 



symbolised by �) is not used but its inverse value �ref, which represents a reference LAI at 

which fraction cover is 0.632. Use of the Monsi-Saeki model assumes that reference LAI (or �) 

does not change over time, which is a necessary simplification. It should be noted that �ref is a 

function of wavelength, leaf angle distribution and light incidence angle, or angle distribution in 

the case of diffuse radiation. Because fV is primarily used to estimate light interception 

integrated over the day, �ref is also best interpreted as a radiation-weighted effective value. 

Globally reported values of CSLA vary by two orders of magnitude, from 0.7 to 71 m2 kg-1 (Wright 

et al., 2004). Values from 1.5 to 9 m2 kg-1 have been found for Australian Eucalypt species with 

an average value of 3 m2 kg-1 (Schulze et al., 2006). This value is used for the deep-rooted 

vegetation HRU. Grasses have thinner leaves so consequently higher CSLA, an average value of 

10 3 m2 kg-1 was used for the shallow-rooted vegetation HRU. 

Literature reported �ref values are usually in the range of 1.3 to 2.5 (� =0.4–0.8). Higher �ref

values correspond with more vertical leaf angles; for Eucalypt forests, values of 1.8 to 2.0 

(�=0.50–0.55) are commonly estimated, whereas values as high as 4.2–7.1 (�=0.14-0.24) have 

been estimated for zenith incidence angles (Macfarlane et al., 2007). Values of �ref were derived 

directly from MODIS satellite LAI and FPAR products, if it is assumed that FPAR is a good 

approximation of canopy cover fV. For areas with high persistent FPAR (equivalent to forest 

vegetation) an average �ref value of 2.5 (�=0.40) was calculated, whereas for areas with low 

persistent FPAR a �ref =1.4 (�=0.70) is derived. These values were used for respectively deep-

rooted and shallow-rooted vegetation in the model. A caveat is that these results will be 

influenced, but to an unknown degree, by spurious influences from the assumptions and 

observations used in the derivation of the products. 

D3.3 Net leaf biomass (mLn) 

A new formulation was developed to estimate net leaf biomass (mLn) , because literature review 

did not suggest a suitably simple model that predicts water-related vegetation phenology. It is 

based on the assumption that vegetation is able to adjusts is leaf biomass at a rate that is 

independent of the amount of existing leaf biomass and energy or biomass embodied in other 

plant organs. The approach shows good performance for dynamic, typically shallow-rooted, 



vegetation in seasonally dry environments. As would be expected, its predictive performance is 

lesser for deep rooted vegetation, particularly in areas where temperature or radiation and not 

water are the most growth limiting resource. 
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where MLn is net leaf biomass change (kg m-2 d-1), MLeq is equilibrium dry leaf biomass given 

water availability and atmospheric demand (kg m-2) and ML is dry leaf biomass (kg m-2). There is 

little information available in the literature to estimate the characteristic time scale for vegetation 

growth towards equilibrium (tgrow, days) and characteristic time scale for vegetation senescence 

towards equilibrium (tsenesce, days) parameters. However, they can readily be calibrated to LAI 

patterns derived from remote sensing. Through visual estimation for around 30 sample locations 

across Australia, tgrowth and tsenesce were both estimated at 50 days for shallow-rooted vegetation, 

and 90 days for deep-rooted vegetation. 

D3.4 Equilibrium leaf biomass (MLeq) 

The approach adopted here is newly developed based on some simple assumptions. It follows 

from the principle of optimum resource use, which implies that leaf area will adjust - within the 

limits of plant physiology and resource availability - to bring transpiration rates in equilibrium 

with the capacity of the roots to draw water from the soil (Umax). The corresponding equilibrium 

fractional vegetation cover is defined by (see Appendix D2.2): 
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The equilibrium dry leaf biomass given water availability and atmospheric demand is defined by: 
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where E0 is potential evapotranspiration (mm d-1), fV is fraction canopy cover (dimensionless), 

fVmax is maximum achievable canopy cover (dimensionless), ga is aerodynamic conductance (m 

s-1), gs is canopy conductance (m s-1), k� is a coefficient that determines evaporation efficiency (-

dimensionless), MLn is net leaf biomass change (kg m-2 d-1), MLeq is equilibrium dry leaf biomass 

given water availability and atmospheric demand (kg m-2) and U0 is maximum root water uptake 

(mm d-1). 

Methods to estimate �ref and Gsmax are provided in Appendix D3.1 and Appendix D2.3 

respectively. 

The parameter �max is introduced to replicate the limiting effect of maintenance respiration 

losses in the maximum leaf area that can be sustained. Maximum LAI values found in Australia 

generally appear to be less than 7 for eucalypt forests, although values of up to 10 have been 

reported for agricultural crops (Hill et al., 2006). A value of �max=8 is used as a default in the 

model. It is noted that this parameter will not normally have much influence on ET estimation, as 

water availability and growth rate will limit the LAI that can be achieved in water limited 

environments; whereas available energy rather than LAI will determine ET in energy-limited 

environments.



Appendix E - List of symbols 

Roman symbols 

CN runoff curve number (-)

CSLA specific leaf area per unit dry leaf 

biomass (m2 kg-1) 

D0 top soil water drainage (mm d-1) 

Dd deep soil water drainage (mm d-1) 

Dg ground water drainage (mm d-1) 

Ds shallow soil water drainage (mm d-1) 

E0 potential evapotranspiration (mm d-1) 

Ee combined evaporation (mm d-1) 

Eg groundwater evaporation (mm d-1) 

Ei interception evaporation (mm d-1) 

Er surface water evaporation (mm d-1) 

Es soil evaporation (mm d-1) 

Et transpiration (mm d-1) 

Fdg factor describing connectivity between 

soil and groundwater (-) 

FER0 average ratio of wet canopy 

evaporation rate and rainfall rate for full 

canopy cover (-) 

Floss,max maximum fraction of daytime net 

radiation ‘lost’ to heat storage when 

there is no vegetation (-) 

FOW open water evaporation scaling (-) 

FS,ref reference soil cover fraction that 

determines the rate of decline in energy 

loss with increasing canopy cover (-) 

fdrain daily drainage fraction (-) 

fER estimated ratio of wet canopy 

evaporation rate and rainfall rate (-) 

fS fraction uncovered surface (-) 

fsat fraction area saturated (-) 

fsE soil evaporation fraction (-) 

fsEmax maximum soil evaporation fraction (-) 

ft  transpiration fraction (-) 

fV vegetation canopy cover (-) 

fV,max maximum achievable canopy cover (-) 

fVeq equilibrium canopy cover (-) 

fwater fraction covered by water (-) 

Gsmax maximum surface conductance for 

closed canopy (m s-1) 

ga aerodynamic conductance (m s-1) 

gs maximum surface conductance (m s-1) 

H catchment humidity 

h vegetation canopy height (m) 

I infiltration (mm d-1) 

I0 initial retention capacity (mm) 

Ii initial infiltration (mm) 



Ia inital abstraction losses (mm) 

KFC  daily drainage fraction field capacity (-) 

Kg groundwater drainage coefficient (-) 

Kr streamflow drainage coefficient (-) 

k� coefficient determining the efficiency of 

energy use for evaporation (-) 

ML dry leaf biomass per unit area (kg m-2) 

MLeq equilibrium dry leaf biomass (kg m-2) 

mLn  net rate of change in leaf biomass per 

unit area (kg m-2 d-1) 

Pg gross precipitation (mm d-1) 

Pn net precipitation (mm d-1) 

Pwet precipitation needed to saturate canopy 

(mm d-1) 

pair air pressure (Pa) 

pe vapour pressure (Pa) 

pes saturated vapour pressure (Pa) 

Q streamflow (mm d-1) 

QCN SCS-CN runoff (mm) 

QR surface runoff (mm d-1) 

RLin incoming longwave radiation (W m-2) 

Rloss radiation energy ‘lost’ to heat storage 

and photosynthesis (W m-2) 

RLout outgoing longwave radiation (W m-2) 

Rn net radiation (W m-2) 

RSin incoming shortwave radiation (W m-2) 

RSn net shortwave radiation (W m-2)  

RLn net longwave radiation (W m-2) 

RSout outgoing shortwave radiation (W m-2) 

S0 top soil water storage (mm) 

Sd deep soil water storage (mm) 

SFC soil water storage at field capacity () 

Sg groundwater storage (mm) 

SGref reference groundwater storage for 

saturated fraction estimation (mm) 

Smax potential soil maximum storage 

capacity (mm d-1) 

Sr runoff storage (mm) 

Ss shallow soil water storage (mm) 

SV canopy rainfall storage capacity (mm) 

sV canopy storage capacity per unit leaf 

area (mm) 

SzFC accessible soil water storage at field 

capacity of layer z (mm) 

Ta* effective air temperature (°C) 

tgrow time constant determining rate of 

canopy increase (d) 

tsenesce time constant determining rate of 

canopy decrease (d) 

U0 maximum root water uptake (mm d-1) 

U0z maximum root water uptake from layer 

z (mm d-1) 

Uz root water uptake from layer z (mm d-1) 

w0lim relative water content of top soil at 

which evaporation is reduced (-) 



wz relative wetness of layer z (-) 

wzlim relative water content of layer z at 

which root uptake is reduced (-) 

w�,ref reference value of w0 describing the 

relationship between albedo and top 

soil wetness (-) 

Y capillary rise, from groundwater to deep 

soil (mm d-1) 

Greek symbols 

� coefficient describing rate of hydraulic 

conductivity increase with water content 

(-) 

� leaf area index (-) 

�max  maximum achievable LAI (-) 

�ref  reference LAI determining canopy 

cover (-)
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Abstract. Controlled experiments provide strong evidence

that changing land cover (e.g. deforestation or afforestation)

can affect mean catchment stream ow (Q). By contrast, a

similarly strong in uence has not been found in studies that

interpret Q from multiple catchments with mixed land cover.

One possible reason is that there are methodological issues

with the way in which the Budyko framework was used in the

latter type studies. We examined this using Q data observed

in 278 Australian catchments and by making inferences from

synthetic Q data simulated by a hydrological process model

(the Australian Water Resources Assessment system Land-

scape model). The previous contrasting �ndings could be re-

produced. In the synthetic experiment, the land cover in u-

ence was still present but not accurately detected with the

Budyko- framework. Likely sources of interpretation bias

demonstrated include: (i) noise in land cover, precipitation

and Q data; (ii) additional catchment climate characteris-

tics more important than land cover; and (iii) covariance be-

tween Q and catchment attributes. These methodological is-

sues caution against the use of a Budyko framework to quan-

tify a land cover in uence in Q data from mixed land-cover

catchments. Importantly, however, our �ndings do not rule

out that there may also be physical processes that modify

the in uence of land cover in mixed land-cover catchments.

Process model simulations suggested that lateral water re-

distribution between vegetation types and recirculation of

intercepted rainfall may be important.

1 Introduction

1.1 Background

There is strong experimental evidence that changing land

cover (e.g. deforestation or afforestation) can affect the lo-

cal water balance. Such an in uence has been detected at

various scales, from site water balance and atmospheric wa-

ter  ux studies to small catchments undergoing change (see

review by e.g. van Dijk and Keenan, 2007 and references

therein). Controlled catchment experiments have demon-

strated a change in mean catchment stream ow or (synony-

mously) water yield (Q) after land cover change (typically

forest planting or logging; Bosch and Hewlett, 1982; Brui-

jnzeel, 1990, 2004; Andréassian, 2004; Brown et al., 2005;

Farley et al., 2005). They appear to provide clear evidence

that land cover characteristics affect Q, although this in u-

ence is moderated by a range of climate and catchment char-

acteristics as well as vegetation attributes beyond broad land

cover class alone (Andréassian, 2004; Bruijnzeel, 2004; van

Dijk and Keenan, 2007). These conclusions could be corrob-

orated by analysis of collated longer term Q estimates from

multiple catchments, provided only catchments with (near

complete) forest cover and herbaceous cover were selected

(Holmes and Sinclair, 1986; Turner, 1991; Zhang et al., 1999,

2001). The collated data were still dominated by small exper-

imental catchments, however, and such experiments are not

without their challenges (discussed further on).

Subsequent studies have attempted to detect a similar

land cover in uence by statistically analysing Q from many

catchments with mixed land cover. In such data sets, climate

is the primary reason for variation in response and therefore

Published by Copernicus Publications on behalf of the European Geosciences Union.



3462 A. I. J. M. van Dijk et al.: Land cover and water yield

needs to be controlled for several studies do this by �tting

an additive formulation of a Budyko model1 (Budyko, 1974)

that explicitly represents two (e.g. forest and herbaceous) or

a small number of land cover types (Zhang et al., 2004; van

Dijk et al., 2007; Oudin et al., 2008; Donohue et al., 2010;

Peel et al., 2010). Such an approach has been described as

a top-down analysis (sensu Kleme�s, 1983; Sivapalan et al.,

2003). In the following formula:

Qj =

∑

i

FCi,jf (Pj ,Pj ,wi), (1)

where Qj , Pj , and PEj are the long-term (e.g. > 10 yr) av-

erage Q, precipitation and potential evaporation2 (in mm

per time unit) for catchment j , FCi,j is the fractional cover

of land cover type i in catchment j , and wi a dimension-

less model parameter that characterises the hydrological be-

haviour of land cover class i and may be interpreted as a

measure of the ef�ciency with which vegetation accesses

and uses stored water. The in uence of land cover is sub-

sequently determined by �nding the wi values that minimise

the root mean square error (RMSE) between observed and

estimated Q, and interpreting the found parameter values.

The cited studies performed such an analysis using collated

data for 221 (Donohue et al., 2010) to 1508 (Oudin et al.,

2008) catchments. They report either a much smaller land

cover in uence than found in controlled experiments (Zhang

et al., 2004; van Dijk et al., 2007; Oudin et al., 2008; Dono-

hue et al., 2010; Peel et al., 2010); no statistically signi�cant

in uence (Zhang et al., 2004; van Dijk et al., 2007; Oudin et

al., 2008; Peel et al., 2010); or even an in uence opposite to

that which might be anticipated � at least for some land cover

classes (Oudin et al., 2008; Peel et al., 2010) or climate types

(van Dijk et al., 2007; Peel et al., 2010).

It might seem surprising that land cover change would

have a marked effect on the water balance of a catch-

ment when it has homogeneous land cover, but not

when it has mixed land cover. Some possible physical

and methodological causes have been suggested. Physical

explanations include:

1. Catchment size. The nature of controlled experiments

puts a limit to the size of catchments that can be manipu-

lated and the majority of experiments have been carried

out on catchments smaller than 1 km2 (see e.g. tabulated

data in Andréassian, 2004; Brown et al., 2005). Con-

versely, data sets of real-world catchments with mixed

land cover tend to have average catchment sizes in the

order of hundreds to thousands km2 (see respective

studies listed earlier). A known issue with small catch-

ments is the risk of ungauged subterranean transfers

1De�ned here as any rational function that embodies the same

conceptual model as the original (see various examples in e.g.

Oudin et al., 2008).
2 In evaporation we include all evaporation and transpiration

 uxes.

(e.g. Bruijnzeel, 1990), which could lead to overestima-

tion of the in uence of land cover change on Q. Con-

versely, while land surface-atmosphere feedbacks per-

haps can safely be ignored for small catchments, that

may not be the case for large catchments, where land

cover certainly in uences overall evaporative energy

and may even modulate precipitation (for discussion see

Donohue et al., 2007; van Dijk and Keenan, 2007).

2. Catchment hydrological processes. As catchment ex-

periments require small and well de�ned watersheds,

they may be expected to have greater relief in compari-

son to larger catchments. Greater relief may mean shal-

lower soils, less in�ltration and therefore more storm

 ow, a more ef�cient surface drainage network, and

lesser evaporation losses from streams, wetlands and

groundwater-using vegetation (van Dijk et al., 2007).

3. Land cover characteristics. Experimental catchments

may be expected to have a more idealised and homoge-

nous vegetation cover and fewer activities and structures

designed to reduce storm runoff. In afforestation stud-

ies, the selection of suitable catchments may have cre-

ated a bias towards low-complexity land cover, whereas

land cover after clearing is unlikely to be representa-

tive of established agricultural landscapes. Large mixed

land-cover catchments may include surface runoff inter-

cepting features (e.g. hillside farm dams, tree belts) and

unaccounted surface water or groundwater use (Calder,

2007; van Dijk et al., 2007). In addition, forest clear-

ing in experimental studies may be associated with soil

disturbance, which may enhance Q generation for rea-

sons that are not directly attributable to land cover per

se (Bruijnzeel, 2004). The consequence may be that the

contrast in hydrological response between forest and

herbaceous vegetation may be greater in experimen-

tal catchments than in non-experimental catchments.

Finally, depending on the con�guration of vegetation

types within a catchment, forests may intercept and use

lateral  ows of water from herbaceous vegetation (fur-

ther discussed in Sect. 4.2)

There are also some potential methodological issues:

4. Other overriding climate and terrain factors. Several

studies have reported dif�culty in detecting changes

in the stream ow response of individual catchments

as they undergo land use or land cover change, in

large part because of the in uence of climate variability

(e.g. Beven et al., 2008; Pe�na-Arancibia et al., 2012).

Con�dent detection and attribution of land cover in u-

ence requires that other factors are considered and con-

trolled for Budyko theory controls for the two most im-

portant determinants of the long-term water balance, P

and PE. One might question whether the Budyko frame-

work is suf�ciently powerful to evaluate effects in addi-

tion to P and PE alone, and if so, whether indeed land
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cover is the next most important variable. Additional

factors potentially equally or more important than land

cover include the phase difference between seasonal P

and PE patterns (Budyko, 1974; Milly, 1994) and other

aspects of their temporal behaviour (e.g. rainfall inten-

sity). Depending on their covariance with land cover,

these attributes may attenuate or enhance any land cover

in uence on Q.

5. Covariance between land cover and climate. Covari-

ance between land cover and climate is commonly

present in collated catchment data sets due to the cor-

relation between natural biomes and climate, and be-

cause of the role of landscape and climate in land use

and land cover change decisions. For example, catch-

ments with considerable remnant and plantation forests

will usually be found more commonly in regions with

greater relief, usually associated with greater P and

lower PE than their lowland counterparts. Applying an

additive response model to a data set with covariance

between candidate predictors makes erroneous results

more likely. Van Dijk et al. (2007) attempted to con-

trol for this effect and demonstrated that it in uenced

the results, but was probably not the only cause for the

counterintuitive results they obtained.

6. Measurement error. Studies analysing data from small

catchments have not been able to detect a signi�cant

change in stream  ow when land cover is changed in

less than 15�20% of a catchment (Bosch and Hewlett,

1982; but see Trimble et al., 1987; Stednick, 1996). Ar-

guably, this can be attributed to the in uence of mea-

surement noise on the analysis. Statistically, therefore it

might be expected that it is harder to detect a land cover

in uence in large catchments with land cover mixtures

than it is for catchments with homogeneous land cover.

Using additive Budyko models requires estimates not

only of Q, but also of catchment average P , PE and

fractional cover (FC) of the land cover classes of inter-

est. Errors will occur in each of these and may affect the

analysis results, even more so if errors are not random.

For example, Oudin et al. (2008) speculated that sys-

tematic precipitation measurement errors affected their

analysis.

1.2 Objective

In this study, we aim to test the hypothesis that method-

ological issues with the use of a Budyko framework to in-

terpret collated data from multiple mixed land-cover catch-

ments may explain why a land cover in uence has not been

detected. To test this, we used Q observations from 278 non-

experimental Australian catchments, the Zhang formulation

of the Budyko model (Zhang et al., 2001), and a bottom-

up dynamic hydrological process model with explicit repre-

sentation of vegetation characteristics (AWRA-L). Synthetic

experiments were performed in which the Budyko model

was used to analyse process model simulations for the 278

catchments. To paraphrase, we use the more complex model

(AWRA-L) to create a virtual laboratory. We then perform a

virtual experiment and use the Budyko model as an analytical

tool to interpret the results. If our experiment can reproduce

both a land cover in uence for individual catchments as well

as the lack of in uence found in the type of multi-catchment

studies described in the introduction, then this would support

our hypothesis.

It is emphasised that we do not aim to prove that the

methodological issues described are the single most impor-

tant cause for the discrepancies arising from the discussed

application of the Budyko model. Their presence certainly

does not rule out the plausibility and presence of additional

methodological or physical explanations. Several such expla-

nations were mentioned and are further explored in the dis-

cussion (Sect. 4.2).

Strictly speaking, we are only able to test our hypothe-

sis for the speci�ed combination of catchment data, Budyko

model formulation and process model. Moreover, we use

models in our synthetic experiment as a plausible but not nec-

essarily highly accurate representation of reality. This type of

synthetic study is not unique but somewhat uncommon in the

hydrological literature, and therefore we brie y discuss some

caveats as to what are not our objectives.

Firstly, we do not aim to validate or falsify the dynamic

process model (AWRA-L) we used in this experiment. We

also do not aim to prove that the model structure and param-

eter values used here are the best possible description of re-

ality, or better than any other model(s). Any model can only

ever be a  awed and simpli�ed abstraction of reality (e.g.,

Oreskes et al., 1994). Here we use the AWRA-L model be-

cause it is comparatively simple, because we understand it

suf�ciently well to interpret its behaviour and, most impor-

tantly, because it is able to reproduce two key features also

observed in real data sets, as discussed in further detail be-

low. Any other model able to meet this criterion should have

been suitable for the experiment.

Secondly, we do not propose that we can use the more

complex process model to prove a land cover in uence;

rather we show that it can reproduce such an in uence in

conditions were it has been observed as well as reproduce its

absence in conditions were it has not. Proving the existence

of a land cover in uence is neither necessary (we refer to the

empirical evidence discussed) nor possible (a model funda-

mentally cannot provide proof of a real-world phenomenon,

at best only a plausible explanation). We will discuss this

point in more detail further on.

Finally, we do not seek to falsify Budyko type models

as a useful and predictive theory, or question the useful-

ness of top-down analysis as a paradigm. We focus here on

only one very speci�c application: whether analysing col-

lated data from mixed land-cover catchments by �tting a
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Fig. 1. Location of the 278 Australian catchments for which stream-

�ow data were used in the analysis.

form of the Budyko model is able to accurately detect land

cover in�uence.

2 Methods

2.1 Data

The Q data used here were identical to the data used by

van Dijk and Warren (2010), which is a subset of 278 out

of around 326 records used in previous studies (Guerschman

et al., 2008, 2009; van Dijk, 2010a, c) and very similar in

composition to Australian catchment data used in other stud-

ies (e.g. Zhang et al., 2004; Peel et al., 2010). Catchment

boundaries were derived from a 9′′ resolution digital eleva-

tion model (Fig. 1) and catchments with major water regu-

lation infrastructure were excluded. The 278 catchments that

were selected had data for at least "ve (not necessarily con-

secutive) years between 1990 and 2006 (median 16 yr). The

woody vegetation cover fraction was mapped on the basis of

Landsat Thematic Mapper imagery for 2004 and daily pre-

cipitation and Priestley-Taylor PE was interpolated at 0.05◦

resolution from station data (Jeffrey et al., 2001). Catchment

areas varied from 23�1937 (median 278) km2, tree cover

from 0�90% (median 25%), P from 404�3138 (median 836)

mmyr−1, PE from 766�2096 (median 1265)mmyr−1, and

Qobs from 4�1937 (median 114)mmyr
−1.

2.2 Budyko model

Oudin et al. (2008) tested "ve different Budyko model for-

mulations and found little difference in their explanatory

power, and all formulations have a very similar functional

form. We chose the model of Zhang et al. (2001) because it

was used successfully in previous studies to detect land cover

in�uence in a globalQ data set of (mostly small) catchments

with homogeneous land cover. For a single land cover class,

the model can be written as

Q=
P

1+ P
PE
+w

(

PE
P

)2
. (2)

For a catchment with a two land cover classes, forest and

herbaceous vegetation, Eq. (2) can be rewritten as (cf. Eq. 1)

Q= FC (forest)
P

1+ P
PE
+w(forest)

(

PE
P

)2

+FC (herbaceous)
P

1+ P
PE
+w(herbaceous)

(

PE
P

)2
.

. (3)

2.3 Dynamic model

The dynamical model used is the AustralianWater Resources

Assessment system Landscape hydrology (AWRA-L) model

(version 0.5; van Dijk, 2010b; van Dijk and Renzullo, 2011;

van Dijk et al., 2012). AWRA-L can be considered a hybrid

between a simpli"ed grid-based land surface model and a

non-spatial catchment model applied to individual grid cells.

Where possible process equations were selected from litera-

ture and selected through comparison against observations.

Prior estimates of all parameters were derived from liter-

ature and analyses carried out as part of model develop-

ment. Full technical details on the model can be found in van

Dijk (2010b) but some salient aspects are summarised here.

The con"guration used here considers two hydrological re-

sponse units (HRUs): deep-rooted tall vegetation (forest) and

shallow-rooted short vegetation (herbaceous). The water bal-

ance of a top soil, shallow soil and deep soil compartment are

simulated for each HRU individually and have 30, 200 and

1000mm plant available water storage, respectively. Ground-

water and surface water dynamics are simulated at catchment

scale. Minimum meteorological inputs are gridded daily to-

tal precipitation and incoming short-wave radiation, and day-

time temperature. Maximum evaporation and transpiration

given atmosphere and vegetation conditions are estimated us-

ing the Penman-Monteith model (Monteith, 1965). Actual

transpiration is calculated as the lesser of maximum tran-

spiration and maximum root water uptake given soil water

availability. Rainfall interception is estimated separately us-

ing a variable canopy density version of the event-based Gash

model (Gash, 1979; van Dijk et al., 2001a, b) to account for

observed high rainfall evaporation rates (for discussion see

e.g. van Dijk and Keenan, 2007). The in�uence of vegetation

on the water balance occurs in a number of ways: compared

to short vegetation, forest vegetation is parameterised to have

lower albedo, greater aerodynamic conductance, greater wet

canopy evaporation rates, lower maximum stomatal conduc-

tance, thicker leaves, access to deep soil and ground water,

and adjust less rapidly to changes in water availability.
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Van Dijk and Warren (2010) evaluated AWRA-L with the

con�guration and parameterisation used here against a range

of in situ and satellite observations of water balance com-

ponents and vegetation dynamics. This included evaluation

against Qobs from the catchments used in this analysis, as

well as  ux tower latent heat  ux observations at four sites

across Australia, including both forest and herbaceous sites

(van Dijk and Warren, 2010). Latent heat  ux patterns for

dry canopy conditions were reproduced well. Comparison of

total latent heat  ux was dif�cult due to the large uncertainty

in rainfall interception evaporation estimated from the  ux

tower measurements. Stream ow records were reproduced

well, that is, with an accuracy that was commensurate to that

achieved by other rainfall-runoff models with a similar cali-

bration approach.

2.4 Experiments

2.4.1 Can previous contrasting �ndings be reproduced

and reconciled with the process model?

We did two tests to see whether we could reproduce the

contrasting �ndings of published analyses of Q from ho-

mogenous experimental and from multiple non-experimental

mixed land-cover catchments, respectively. First, we �tted

the two parameter Zhang model (Eq. 3) by minimising the

standard error of estimate (SEE) against Qobs from the 278

catchments (using Solver in Microsoft ExcelTM). We inter-

preted the derived w(forest) and w(herbaceous) parameter

values and implied land cover to assess whether we obtained

the same contrasting �ndings as previous studies.

Next, we investigated whether the AWRA-L could rec-

oncile these contrasting �ndings, which means meeting two

conditions. First, the model needed to reproduce the observed

Q from the 278 catchments as well as, or better than, the

calibrated two-parameter Zhang model, as judged by sev-

eral measures of agreement (Table 1). Second, the model

needed to be in agreement with the results of experimen-

tal catchment studies of land cover change impacts on Q.

One test of this would be to reproduce Q changes observed

in an actual paired catchment experiment, but unfortunately

we did not have access to daily stream ow and meteorolog-

ical data for a number of such experiments, and one exam-

ple would have a very limited statistical signi�cance. Instead,

we used AWRA-L to simulate Q from the 278 catchments

under conditions of full forest and full herbaceous cover,

respectively. We compared the resulting water balance es-

timates with the empirical relationships for the respective

land cover type reported by Zhang et al. (2001), who pro-

pose two alternative models to estimate Q. The �rst method

(Zhang-A) is to use Eq. (3) with values ofw(forest) = 2.0 and

w(herbaceous) = 0.5, with PE estimated using the Priestley�

Taylor formula and a standard land cover with assumed

albedo and aerodynamic conductance. The second method

(Zhang-B) is to use the same approach, but substitute PE by

values of 1410 and 1100mmyr−1 for forest and herbaceous

cover, respectively. The latter reduces the physical realism

of the model, but provides a convenient alternative to where

PE estimates are not readily available, and has been shown

to agree well with other empirical relationships (Holmes and

Sinclair, 1986; Turner, 1991) and data from catchments with

homogeneous land cover (Zhang et al., 2001; Brown et al.,

2005). These so-called Zhang curves have been widely used

to estimate the impact of conversion between forest and non-

forest cover on Q in scenario studies and policy reports

(e.g. Austin et al., 2010; Brown et al., 2007; Dawes et al.,

2004; Sun et al., 2006; van Dijk et al., 2006), and as such

were considered a relevant point of reference. The vast ma-

jority of such reports assume that land cover impact is lin-

early proportional to the area of land cover change.

The prominent use of the Zhang curves in policy devel-

opment puts further onus on understanding the apparent dis-

crepancies between the results from the two experimental de-

signs discussed. We emphasise that our objective does not

require that the process model explains more variation than

the Zhang models in one or both cases; equal or similar per-

formance would be suf�cient. The critical difference is that

�tting the Zhang models typically leads to two substantially

different parameter sets, essentially producing two mutually

contradictory models in the respective applications. By con-

trast, the process model uses one parameter set only for both

cases and therefore by de�nition produces internally consis-

tent results. The process model parameters were estimated

a priori rather than optimised, which is not essential but ar-

guably preferable.

In summary, if the tests described above would be success-

ful, we would be able to conclude that previous contrastive

�ndings can be reproduced, and appear to be at least partly

due to methodological problems. To put it differently: if the

same process model with identical parameters can repro-

duce both (1) the land cover in uence expected for individual

catchments, and (2) the observed Q from mixed catchments,

then the fact that two different parameter sets are required

in the case of the Zhang model suggests a methodological

problem with that particular inference approach.

The subsequent analyses were designed to try and analyse

three potential methodological problems, viz. measurement

errors, an overriding in uence of other environmental fac-

tors, and covariance between land cover and climate.

2.4.2 Are measurement errors responsible?

One feasible explanation for the reduced or absent land cover

impact inferred from catchments with mixed land cover is

the possible impact of data error: P , PE, Q and forest cover

fraction (FC) are all prone to measurement and estimation

error. This could affect values for the two Zhang model pa-

rameters that were optimised. To test for this, we performed

a synthetic experiment in which noise was added to theQ es-

timates produced by the process model (Qsim), for the case
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with actual, mixed land cover (we did not use the actually

observedQ as this already contains measurement noise, with

unknown characteristics). First, a simulated measurement er-

ror with an absolute average of 10% was added to all 278

original values of FC and mean P , PE and Qsim. The er-

rors were drawn independently for each variable and each

catchment. For FC an error was added that was drawn from

a normal (Gaussian) distribution with mean of zero and stan-

dard deviation of 0.1; the result was limited within the range

0 to 1. The values of P , PE and Qsim were multiplied with

a factor drawn from a normal distribution with mean of one

and standard deviation of 0.1. Next, the two Zhang model

parameters were optimised to the resulting noisy FC, P, PE

and Qsim values for all 278 catchments combined. This ex-

periment was repeated 3000 times, each time with a sample

of 278 catchments. The resulting 3000 pairs ofw values were

compared to those "tted to the original FC, P , PE and Qsim

values (i.e. without noise added), to assess whether the sim-

ulated measurement noise led to parameter values suggestive

of a smaller than predicted land cover in�uence.

2.4.3 Are additional environmental factors responsible?

The premise of the Budyko framework is that mean P and PE

are the main determinants ofQ. Beyond this, however, other

climate factors or terrain factors may be more important than

land cover category. To investigate this possibility, we used

the Zhang model to analyse the AWRA-L simulations for the

forest and herbaceous scenarios. For each catchment, we cal-

culated the model parameter (w) value corresponding to the

Q simulated for each land cover scenario (i.e. full forest or

full herbaceous cover) using the following inverted model

form (cf. Eq. 2):

P
Qsim(scenario)

−
P
PE
− 1

(

PE
P

)2
. (4)

For each land cover category, we attempted to "nd catch-

ment attributes that could explain the variance in inferred

w values. We used the same step-wise regression approach

used in earlier analyses of the sameQ data (van Dijk, 2010a,

c). In summary, candidate predictors were selected from a

range of catchment attributes based on the parametric and

non-parametric (ranked) correlation coef"cients (r and r∗,

respectively). Linear, logarithmic, exponential and power re-

gression equations were calculated for all potential predic-

tors, and the most powerful one was selected. The resid-

ual variance was calculated and the same procedure was re-

peated. The catchment attribute data available included mea-

sures of catchment morphology (catchment size, mean slope,

�atness); soil characteristics (saturated hydraulic conductiv-

ity, dominant texture class value, plant available water con-

tent, clay content, solum thickness); climate indices (mean

P , mean PE, humidity index P /PE, remotely sensed ac-

tual evapotranspiration, average monthly excess precipita-

tion); and land cover characteristics (fraction woody vegeta-

tion, fractions non-agricultural land, grazing land, horticul-

ture, and broad acre cropping, remotely sensed vegetation

greenness). Full details on data sources and catchment cli-

mate, terrain and land cover attributes can be found in van

Dijk (2010a, c).

2.5 Is covariance between land cover and climate

responsible?

Our catchment data set shows modest covariance between

forest cover (FC) and P /PE (r = 0.44). Earlier analyses

showed that this type of covariance can affect the ability to

accurately determine land cover in�uence (see van Dijk et

al., 2007, for a detailed example). We performed a further

synthetic experiment using the AWRA-L model to test the

magnitude of this problem:

1. Each of the 278 catchments was assigned a new vir-

tual land cover by randomly drawing a new value for

FC from a normal distribution with the same mean and

standard deviation as the observed FC values (0.284 and

±0.224, respectively). Values were truncated to remain

within the range 0 and 1.

2. For each catchment, the AWRA-L model was run with

the new FC values and the original meteorological in-

puts.

3. The two Zhang model parameters were "tted to the re-

sulting 278Qsim values.

The experiment was repeated 3000 times (each time with all

278 catchments), and the results were analysed to determine

whether there was a relationship between any (randomly in-

troduced) covariance between the FC and P /PE values on

the one hand, and the inferred land cover in�uence on the

other.

3 Results

3.1 Previous contrasting �ndings can be reproduced

and reconciled by the process model

Indicators of the agreement between Q observed in the

278 catchments and values estimated by the optimised two-

parameter Zhang model (Eq. 3) and the AWRA-L model

are listed in Table 1. For comparison, the performance

of the originally proposed Zhang-A and Zhang-B models

and an optimised Zhang model (Eq. 2) are also shown.

This comparison is important, as these two models incor-

porate the response of Q to land cover change as inferred

from experimental catchment studies and widely used in

scenario analysis.

Calibrating the Zhang model parameters led to an im-

provement in model performance and reduction in bias, when
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Table 1. Performance indicators of the original Zhang et al. (2001)

models (Zhang-A and Zhang-B; see text for explanation), the Zhang

model with one and two calibrated parameters, respectively, and the

AWRA-L with prior parameter estimates. Al metrics relate to the

agreement between modelled and observed mean annual stream�ow

(Q, mm per year) for all catchments (N = 278). SEE= standard error

of estimate, MAE=mean absolute error, and Bias =mean bias (all

in mm yr−1); Rel. Bias =mean of absolute values of percentage bias

and FOM=fraction of values overestimated by model (in %).

SEE MAE Bias Rel. Bias FOM

Zhang-A 119 97 79 44% 91%

Zhang-B 136 114 86 47% 86%

Zhang � 2 parameter 84 54 4 2% 62%

Zhang � 1 parameter 84 54 4 2% 62%

AWRA-L 78 50 1 1% 54%

compared to the original models. However, reducing the

Zhang model to a one-parameter model (that is, making

the model insensitive to land cover), did not degrade model

performance (optimised values were w(forest) = 1.91 and

w(herbaceous) = 1.98 versus w = 1.95, respectively). These

results support previously published result that "tting a

Budyko model to observations from non-experimental catch-

ments does not show the predicted land cover in�uence, in

contrast with results based on experimental catchments. In

other words, we were able to reproduce previous contrasting

"ndings and reconcile them.

Table 1 also shows that, despite the lack of parameter op-

timisation, AWRA-L performs slightly better than the cali-

brated Zhang models. The AWRA-L predictions ofQ for the

same 278 catchments, but this time for a hypothetical sce-

nario of full forest and herbaceous cover, are compared to

the original Zhang-A and Zhang-B model in Fig. 2. AWRA-

L is able to reproduce the approximate differences between

forest and herbaceous catchments predicted by the original

Zhang models, although the forest scenario predictions agree

better with the Zhang-B model than with the Zhang-A model

(Fig. 2). It follows that the process model (1) can predict Q

from the 278 catchments with mixed land cover as well as (in

fact, slightly better than) a "tted Zhang model, and (2) sug-

gests a land cover in�uence of similar magnitude as that pre-

dicted by the original Zhang curves. Therefore, the process

model can reconcile the contrasting conclusions drawn from

experimental and mixed catchment Q data that the Zhang

model cannot reconcile.

Further supporting this conclusion, the same results could

also be reproduced when process modelQ estimates were in-

terpreted using the Zhang model. If a one-parameter Zhang

model was "tted to the modelled Qsim with hypothetical

full forest or herbaceous cover, w values 3.6 and 1.0 where

found, respectively � producing curves quite similar to the

original Zhang-A and Zhang-B models. However, when the

two-parameter Zhang model was "tted to the Qsim obtained
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Fig. 2. Comparison of AWRA-L simulated mean stream�ow for the

278 catchments for scenarios of forest cover (green triangles) and

herbaceous cover (orange circles) shown in two different ways. Also

shown are the two models proposed by Zhang et al. (2001): (top

panel) Zhang-A and (bottom panel) Zhang-B.

with actual FC values, the resulting values were much closer,

at 2.22 and 1.79, respectively, predicting only a very small

land cover in�uence (average forest water use is only 2%

greater than herbaceous water use). This shows that pre-

vious contrasting "ndings can also be reproduced with the

syntheticQ data.

3.2 Measurement errors are at least partly responsible

The introduction of noise in the data led to higher average

optimised w values than for the experiment without noise

added: 2.7 (range 0.6�9.4) for forest and 2.3 (1.3�9.2) for

herbaceous cover. Importantly, for 39% of the 3000 repli-

cates, the optimised w value for forest was actually lower

than for herbaceous cover. It follows that random errors in

the observations reduce the likelihood that land cover in�u-

ence is detected, let alone accurately quanti"ed.

3.3 Underlying climate factors may be responsible

The distribution of w values calculated from simulatedQ for

individual catchments appeared approximately log-normally

distributed and therefore all values were log-transformed
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before step-wise regression analysis. The ratio P /PE itself

did not explain signi"cant variance in either land cover sce-

nario (r2 < 0.04).

Somewhat unexpectedly, the most powerful predictor of

variation in w values varied between the forest and herba-

ceous cover scenarios. In the full forest cover scenario, PE

itself explained 45% (r2) of the variance in log-transformed

w values (see Fig. 3a). Other predictors did not explain any of

the residual variance. In the full herbaceous cover scenario,

depth-weighted average event precipitation (DWAEP, calcu-

lated as the sum of squared daily rainfall totals divided by

total rainfall) explained 33% of the variation (Fig. 3b). Al-

ternatively, mean event precipitation (total rainfall divided by

the number of rain days) explained 27% of variation (instead

of, not in addition to the variation explained by DWAEP).

Both are indicators of the irregularity of rainfall distribution

(see van Dijk, 2010c for de"nitions). Other predictors did not

explain any of the residual variance.

It is concluded that other climate factors than only the ra-

tio P /PE may have considerable in�uence on Q and hence

affect "ttedw values. We speculate that the explicit consider-

ation of temporal climate patterns may also be the main rea-

son why the (uncalibrated) process model was slightly more

skillful at reproducing observed Q from the 278 catchments

than the (calibrated) Zhang model.

3.4 There is structure in the data set that is at least

partly responsible

Using simulatedQ for randomly generated hypothetical for-

est cover fractions (N = 3000), Zhang model parameter val-

ues of 3.4± 0.7 (range 1.9�6.1) and 1.1± 0.1 (0.9�1.4) were

"tted for forest and herbaceous cover, respectively. These av-

erage values are relatively close to thew values of 3.6 and 1.0

"tted for the full forest and herbaceous cover scenarios (ex-

periment 1). In some experiments the optimised Zhang pa-

rameters were similar to the full cover ones, whereas in other

experiments they were very close to each other (Fig. 4a) (it

is noted thatw(herbaceous) never exceededw(forest), unlike

in the measurement error experiment). It would be tempting

to conclude that the covariance between FC and P /PE in the

original data set (r = 0.44) was the main cause for the under-

estimation of land cover in�uence. However, no relationship

was found between the "tted parameter pair and the covari-

ance between forest cover and P /PE that was introduced into

the data set (Fig. 4a). Nonetheless, our manipulation of the

data must have introduced another form of hidden structure

in the data that affected the optimised parameter values.
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Fig. 3. Relationship between the catchment variable that explained

most of the variance in (log-transformed) Zhang model parameter

(w) values inferred from the synthetic land cover experiment, (top

panel) potential evaporation (PE) for forest catchments and (bottom

panel) depth-weighted average event precipitation (DWAEP) for

herbaceous catchments.

4 Discussion

4.1 Methodological problems can explain previous

contrasting !ndings

Despite their simplicity, Budyko models have shown impres-

sive skill in predicting Q from P and PE alone, when com-

pared to more complex dynamic catchment models. Indeed

in comparison with the more complex AWRA-L model, the

Zhang model could achieve very similar performance in ex-

plaining the observed Q, albeit after parameter �tting. It was

this same �tting, however, that produced land cover param-

eter values that could not be reconciled with the results of

experimental catchment studies, thus reproducing previous

contrasting �ndings. We showed that the dynamic hydrologi-

cal process model could resolve this inconsistency, and there-

fore, that there appear to be methodological problems with
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the use of Budyko models as a detection method in this par-

ticular application.

The synthetic experiments demonstrated that all method-

ological issues tested (measurement errors, the presence of

other important uncontrolled factors, structure in the catch-

ment data set) were plausible and can contribute to a failure

to accurately quantify land cover in�uence with the Budyko

model that was used. In all cases, underestimation of the land

cover in�uence was the most likely result. Desirable aspects

of Budyko models are their conceptual simplicity and the

minimal number of parameters. However, in qualifying the

principle of Occam�s Razor, Albert Einstein (1934) proposed

that �the supreme goal of all theory is to make the irreducible

basic elements as simple and as few as possible without hav-

ing to surrender the adequate representation of a single da-

tum of experience�. On the basis of our results we conclude

that, for the purpose at hand, Budyko models fail at the sec-

ond part of this statement; that is, they are too simple to ad-

equately quantify the in�uence of land cover in collated Q

data from catchments with mixed land cover.

Although we only tested one particular Budyko model,

previous studies suggest that conclusions would likely have

been very similar if any other Budyko model had been used,

due to the identical conceptual structure and similar function

form (see e.g. Oudin et al., 2008). Moreover, we argue that

the methodological issues with heterogeneous data sets such

as the one we analysed are probably not limited to Budyko

models but likely to extend to similarly simple top down in-

ference methods.

There have been attempts to increase the predictive perfor-

mance of the Budyko models by including additional vari-

ables, often within a stochastic framework (e.g. Porporato et

al., 2004). Those not related to land cover include absolute

PE values (Peel et al., 2010), solar radiation, phase differ-

ences between the seasonal P and PE patterns (Donohue et

al., 2010), and the daily distribution of precipitation (see re-

view in Gerrits et al., 2009). Our results suggest that some of

these factors may indeed exert a similarly large or larger in-

�uence on catchment response than land cover. However, try-

ing to control for these additional factors introduces further

parameters and observed or estimated attributes with associ-

ated uncertainty. Ultimately such an approach must fall prey

to the very issue that top-down approaches aim to avoid, that

is, an underdetermined (or undetermined) problem in which

competing hypotheses create similar outcomes and therefore

cannot be tested conclusively.

This is obviously certainly not avoided by the use of dy-

namic process models. An advantage of such models, how-

ever, is that process assumptions can be made more explicit

and individually tested against different types of observa-

tions with different spatial and temporal characteristics. In

light of this, we question whether it is advisable to "t a sim-

pli"ed hydrological model to collated heterogeneous Q data

such as the data analysed here. Arguably, it is more pertinent

to demonstrate that the observations can be explained satis-

factorily by a (more, but not unnecessarily complex) theory

and therefore are not falsi"ed by experimental knowledge.

In this context, the Budyko framework may be a valuable

benchmark test, whose predictive power should be matched

or exceeded by any competing theory (cf. van Dijk and War-

ren, 2010). It is however perhaps less advisable as infer-

ence method to detect second order drivers in heterogeneous

data sets.

Strictly speaking, our results are only valid for one partic-

ular data set. However, all factors we investigated negatively

affected accurate quanti"cation of the land cover in�uence.

We consider it inevitable that at least some of these prob-

lems will be encountered in anyQ data set from large catch-

ments with mixed land cover. Zhang et al. (2001) showed

that this need not prevent detection of land cover impacts in

data from catchments that represent extreme scenarios and

in controlled experiments. Paired catchment experiments in

particular are much more likely to adequately control for cli-

mate and terrain factors and thereby allow accurate quanti"-

cation of the land cover in�uence. Apart from experimen-

tal issues associated with such necessarily small-scale ex-

periments (e.g. subterranean leakage), a critical issue in the

extrapolation of the results from such experiments will be

the degree to which hydrological processes and land cover

characteristics are representative for those in larger, non-

experimental catchments (see van Dijk and Keenan, 2007

for a discussion). More elaborate process models may have

a role to play here, as the in�uence of such representational

errors can be investigated in model experiments.

4.2 Potential physical causes for reduced land cover

in uence in catchments with mixed land cover

We did not set out to explore possible physical rather than

methodological causes for the inability to adequately detect

a land cover in�uence in previous Budyko model applica-

tions in multiple mixed land-cover catchments. They can cer-

tainly play a role. The AWRA-L model was not suitable to

explore all potential processes in-depth; for example, it can-

not simulate land surface-atmosphere feedbacks, and obser-

vations were not available to parameterise the impacts of hu-

man interferences (e.g. farm dams, roads and soil manage-

ment) and lateral water redistribution within hill slopes and

in the river system. Stream�ow routing per se (that is, the ac-

cumulation and propagation of stream�ow through the river

network) has no in�uence on long-term average Q, but the

spatial redistribution of water in the landscape does create

a potential for Q to be reduced, e.g. by greater evaporation

from streams and riparian areas and the lateral redistribution

and subsequent evapotranspiration of surface and sub-surface

water at hill slope level. A simple model experiment was per-

formed to assess the possible magnitude of these processes

by (i) changing the AWRA-L model code to reroute all lat-

eral �ows (surface, soil and groundwater) from the herba-

ceous to the forest landscape component; (ii) running the
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model across all catchments, varying the catchment fraction

of forest from 0�100 %; and (iii) comparing the resultant Q

estimates to those obtained in the case without redistribution

as a reference. The experiment is similar to that reported on

by Vertessy et al. (2002), and can be interpreted as a case in

which forest is preferentially located in the catchment val-

leys, maximising its potential stream�ow impact by inter-

cepting and lateral �ows from upslope areas with herbaceous

vegetation. The reference case (i.e. that used in all previous

experiments) can be interpreted as a case where any of the

hill slopes within a catchment are either fully with or without

forest, in which case the forest impact scales linearly with the

area under the forest. The results (Fig. 5) show that, accord-

ing to the model, a considerable departure from the reference

case is plausible, in line with previous modelling results re-

ported by Vertessy et al. (2002, their Fig. 3). Climate humid-

ity was a strong determinant of the relative in�uence of lat-

eral interactions; the strongest non-linear response was pre-

dicted for the driest catchments (top curve in Fig. 5), whereas

the wettest catchments showed an approximately linear re-

sponse (bottom curve). Importantly, the results predict that a

small fraction of forest can cause a disproportionate reduc-

tion in Q, which can indeed lead to an underestimation of

land cover in�uence from analysing mixed land-cover catch-

ments. It is noted that this model experiment likely overes-

timates the importance of land cover con"guration. Firstly,

the scenario tested is extreme and in contrast with actual land

cover distribution in the catchments, which tend to have most

of the forested area on the less accessible and less produc-

tive hill slopes and tops. Secondly, we are not able to vali-

date the magnitude of the model-predicted �uxes against ex-

perimental data. Indeed, the potential effectiveness of deep-

rooted vegetation in intercepting lateral �ows from upslope

has been speculated on and predicted with models several

times (e.g. Stirzaker et al., 2002) but so far rarely observed

in reality (e.g. McJannet et al., 2000; van Dijk et al., 2007).

An examination of the main model-predicted causes of Q

change associated with land cover change may provide some

further insight into reasons why large catchments with mixed

land cover might behave differently from small, homogenous

(experimental) ones. The model predicts that the main cause

of the different hydrological response is the greater rainfall

interception loss from forest vegetation (Fig. 6). The differ-

ence represents around 10�15% of rainfall; consistent with

the majority of published experiments (e.g. Roberts, 1999;

although much greater differences can occur under maritime

conditions, e.g. Schellekens et al., 1999; McJannet et al.,

2007). A priori it would seem plausible that that the asso-

ciated rapid return of moisture to the atmosphere may in-

�uence rainfall generation downwind (cf. D�Almeida et al.,

2007; Pielke et al., 2007; van Dijk and Keenan, 2007). If this

is indeed the case, then accurate prediction of the in�uence

of land cover change on the water balance of large catch-

ments may depend on the spatial distribution of precipitation

and how it is measured and represented in models. In other

Fig. 4. Zhang model parameter values "tted to synthetic mean

stream�ow estimates for 278 catchments produced by AWRA-L

with random forest cover fractions assigned to each of the catch-

ments. Data points represent the results of 3000 replicate experi-

ments. (Top panel) Zhang model parameter data pairs "tted in each

experiment showing a well-de"ned relationship; (bottom panel) the

difference between log-transformed parameter values versus the

correlation between synthetic forest cover fraction (FC) and catch-

ment humidity (P /PE) introduced in the experiment, showing no

relationship (r = 0.11).

words, in suf"ciently large catchments the rainfall intercep-

tion effect might be mitigated by rainfall recirculation.

Finally, it is emphasised that the interpretation of our

model results, and particularly those presented in this section,

are contingent on the algorithms, assumptions and parame-

terisations of the process model we used here. We believe it

very likely that the methodological problems with the infer-

ence method investigated here would be con"rmed if other

realistic process model structures or parameter sets were

used. However, the predicted magnitude of the in�uence of

lateral interactions and the relative importance of rainfall

interception loss are likely to be more sensitive to model

structure and assumptions, and therefore more speculative.
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Fig. 5. The theoretical maximum in�uence of lateral water redistri-

bution, from herbaceous to forest areas, on mean stream�ow (Q)

as predicted by the AWRA-L model for 278 Australian catchments.

The middle bold and two outer lines represent the catchments with

the median and most extreme responses, respectively. Q reduction

is shown relative to the difference between the 0 and 100% forest

cover cases (in the absence of redistribution a linearly proportional

in�uence would be predicted).

5 Conclusions

Controlled experiments provide strong evidence that chang-

ing land cover (e.g. deforestation or afforestation) can af-

fect mean catchment stream�ow (Q). By contrast, a similarly

strong in�uence has not been found in studies that interpret

Q frommultiple catchments with mixed land cover. One pos-

sible reason is that there are methodological issues with the

way in which the Budyko framework was used in the latter

type studies. We examined this usingQ data observed in 278

Australian catchments and by making inferences from syn-

theticQ data simulated by a hydrological process model (the

Australian Water Resources Assessment system Landscape

model). We draw the following conclusions:

1. Carrying out synthetic experiments with the process

model, we could reproduce the absence of a detectable

in�uence in mixed land-cover catchments as well as the

presence of such an in�uence in individual catchments.

In other words, previous contrasting "ndings could be

reconciled.

2. Several potential methodological problems with the

Budyko framework based inference approach applied

in previous studies were investigated. The apparent ab-

sence of a detectable in�uence when comparing mixed

land-cover catchments could, at least partially, be ex-

plained by the three factors investigated, viz. (i) noise

in land cover, precipitation and Q data; (ii) additional

catchments climate characteristics more important than
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Fig. 6. Contribution of different evaporation terms to the increase

of mean stream�ow after forest removal estimated by the AWRA-L

model, expressed as a percentage of rainfall. Values represent �uxes

averaged over three groups of catchments, intended to represent

(from left to right) water-limited (P /PE< 0.75), transitional, and

energy-limited (P /PE> 1.25) environments. Es = soil and open wa-

ter evaporation; Et = transpiration; Ei = rainfall interception losses.

land cover; and (iii) covariance between Q and catch-

ment attributes. Such methodological issues are likely

to be found in any heterogeneous stream�ow data set.

3. In addition to these methodological issues, there are also

plausible physical causes for the failure to adequately

detect a land cover in�uence in catchments with mixed

land cover. This includes the lateral redistribution of wa-

ter from herbaceous to forest areas, and potential recir-

culation of rainfall intercepted by the forest canopy.
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Sivapalan, M., Blöschl, G., Zhang, L., and Vertessy, R.: Downward

approach to hydrological prediction, Hydrol. Process., 17, 2101�

2111, 2003.

Stednick, J. D.: Monitoring the effects of timber harvest on annual

water yield, J. Hydrol., 176, 79�95, 1996.

Stirzaker, R., Vertessy, R. A., and Sarre, A. (Eds.): Trees, water and

salt: An Australian guide to using trees for healthy catchments

and productive farms, Joint Venture Agroforestry Program, Can-

berra, 159, 2002.

Hydrol. Earth Syst. Sci., 16, 3461�3473, 2012 www.hydrol-earth-syst-sci.net/16/3461/2012/



A. I. J. M. van Dijk et al.: Land cover and water yield 3473

Sun, G., Zhou, G., Zhang, Z., Wei, X., McNulty, S. G. and Vose,

J. M.: Potential water yield reduction due to forestation across

China, J. Hydrol., 328, 548�558, 2006.

Trimble, S. W., Weirich, F. H., and Hoag, B. L.: Reforestation and

the reduction of water yield on the Southern Piedmont since circa

1940, Water Resour. Res. 23, 425�437, 1987.

Turner, K. M.: Annual evapotranspiration of native vegetation in a

Mediterranean-type climate, J. Am Water Resour. Assoc., 27, 1�

6, 1991.

van Dijk, A. I. J. M.: Selection of an appropriately simple

storm runoff model, Hydrol. Earth Syst. Sci., 14, 447�458,

doi:10.5194/hess-14-447-2010, 2010a.

van Dijk, A. I. J. M.: AWRA Technical Report 3, Land-

scape Model (version 0.5) Technical Description,

WIRADA/CSIRO Water for a Healthy Country Flagship,

http://www.clw.csiro.au/publications/waterforahealthycountry/

2010/wfhc-aus-water-resources-assessment-system.pdf, (last

access: 8 March 2011), Canberra, 2010b.

van Dijk, A. I. J. M.: Climate and terrain factors explaining stream-

�ow response and recession in Australian catchments, Hydrol.

Earth Syst. Sci., 14, 159�169, doi:10.5194/hess-14-159-2010,

2010c.

van Dijk, A. I. J. M. and Bruijnzeel, L. A.: Modelling rainfall inter-

ception by vegetation of variable density using an adapted analyt-

ical model. Part 1. Model description, J. Hydrol., 247, 230�238,

2001a.

van Dijk, A. I. J. M. and Bruijnzeel, L. A.: Modelling rainfall inter-

ception by vegetation of variable density using an adapted analyt-

ical model. Part 2. Model validation for a tropical upland mixed

cropping system, J. Hydrol., 247, 239�262, 2001b.

van Dijk, A. I. J. M. and Keenan, R. J.: Planted forests

and water in perspective, Forest Ecol. Manage., 251, 1�9,

doi:10.1016/j.foreco.2007.06.010, 2007.

van Dijk, A. I. J. M. and Renzullo, L. J.: Water resource monitoring

systems and the role of satellite observations, Hydrol. Earth Syst.

Sci., 15, 39�55, doi:10.5194/hess-15-39-2011, 2011.

van Dijk, A. I. J. M. and Warren, G.: AWRA Tech-

nical Report 4, Evaluation Against Observations,

WIRADA/CSIRO Water for a Healthy Country Flagship,

http://www.clw.csiro.au/publications/waterforahealthycountry/

2010/wfhc-aus-water-resources-assessment-system.pdf, (last

access: 8 March 2011), Canberra, 2010.

van Dijk, A. I. J. M., Evans, R., Hairsine, P. B., Khan, S., Nathan,

R., Paydar, Z., Viney, N., and Zhang, L.: A Systems View of

Water in the Murray-Darling Basin. 2. Risks to Our Shared Wa-

ter Resources, CSIRO/Murray-Darling Basin Commission, Can-

berra, 2006.

van Dijk, A. I. J. M., Hairsine, P. B., Arancibia, J. P., and Dowl-

ing, T. I.: Reforestation, water availability and stream salinity:

A multi-scale analysis in the Murray-Darling Basin, Australia,

Forest. Ecol. Manage., 251, 94�109, 2007.

van Dijk, A. I. J. M., Bacon, D., Barratt, D., Crosbie, R., Daamen,

C., Fitch, P., Frost, A., Guerschman, J. P., Henderson, B., King,

E. A., McVicar, T., Renzullo, L. J., Stenson, M. P., and Viney, N.:

Design and development of the Australian Water Resources As-

sessment system. In: Proceedings, Water Information Research

and Development Alliance Science Symposium, August 2011,

Melbourne, 2012.

Vertessy, R. A., Zhang, L., and Dawes, W. R.: Plantations, river

�ows and river salinity, Australian Forestry, 66, 55�61, 2002.

Zhang, L., Dawes, W. R., and Walker, G. R.: Predicting the effect of

vegetation changes on catchment average water balance. Tech-

nical Report 99/12, Cooperative Research Centre for Catchment

Hydrology, Canberra, 1999.

Zhang, L., Dawes, W. R., and Walker, G. R.: Response of mean an-

nual evapotranspiration to vegetation changes at catchment scale,

Water Resour. Res., 37, 701�708, 2001.

Zhang, L., Hickel, K., Dawes, W. R., Chiew, F. H. S., Western,

A. W., and Briggs, P. R.: A rational function approach for esti-

mating mean annual evapotranspiration, Water Resour. Res., 40,

W02502, doi:10.1029/2003WR002710, 2004.

www.hydrol-earth-syst-sci.net/16/3461/2012/ Hydrol. Earth Syst. Sci., 16, 3461�3473, 2012



Appendix G - Errata 

Chapter 2 Identifying hydrological impact of LUCC on streamflow data at the regional 

scale 

Regretfully, minor errors in a figure and text in the original manuscript published in the Journal 

of Hydrology escaped detection at the proof stage. 

Peña-Arancibia, J. L., A. I. J. M. van Dijk, J. P. Guerschman, M. Mulligan, L. A. Bruijnzeel, and 
T. R. McVicar (2012), Detecting changes in streamflow after partial woodland clearing in two 
large catchments in the seasonal tropics, Journal of Hydrology, 416/417, 60-71. The following 
errata correct these errors. 

1. Page 64, Figure 3. The two lower quadrants of the figure describe ‘increase in excess energy’ 

whereas the vertical axis indicates an increase in evaporative demand, thus an increase in 

excess energy. The correct figure should read: 

Fig. 3. Conceptual model based on the long-term coupled water–energy budget at interannual 
scales associated with changes in climate and land use (adapted from Tomer and Schilling, 

2009). P refers to rainfall, areal PET to potential evapotranspiration, exP and exE refer to 

excess amounts of water and energy respectively. Other types of land management which 
increase (e.g. conservation tillage, removal of perennials) or decrease ET (e.g. conservation 
cover, increased forages) are encompassed by deforestation or afforestation, respectively 
(Tomer and Schilling, 2009). 



2. Page 64, 3rd paragraph of Section 3.2 should read exP instead of overlinePex. 

The results and conclusions of the related work are not affected by these errors. 

Appendix C Journal article - Peña Arancibia et al. (2013, Journal of Hydrometeorology) 

A significant digit needed to be included in Table 1 of Appendix C in order to clarify the ranking 

of the precipitation products. The amended table is reproduced below. 

Table 1. Performance ranking of detection and accuracy metrics of precipitation products 
aggregated over the geographical domain, including means and standard deviations (in 
brackets) of: equitable threat score (ETS), probability of detection (POD), False Alarm Ratio 
(FAR), frequency bias (FB), correlation (r), root mean square difference (RMSD), and 
percentage difference in the ratio of monthly precipitation amount to total days with precipitation 
(MPDR). Refer to Section 2 for the definition of the metrics. 

  Rank 

1 2 3 4 5 6 7

ETS Ensemble JRA-25 
ERA-
Interim 

TRMM 
3B42 V6 

NCEP-
DOE CMORPH PERSIANN

  
0.302 
(±0.051) 

0.293 
(±0.054) 

0.290 
(±0.065) 

0.271 
(±0.049) 

0.245 
(±0.037) 

0.231 
(±0.067) 

0.130 
(±0.043) 

POD Ensemble JRA-25 
ERA-
Interim 

NCEP-
DOE 

TRMM 
3B42 V6 CMORPH PERSIANN

0.625 
(±0.090) 

0.622 
(±0.094) 

0.620 
(±0.083) 

0.557 
(±0.078) 

0.524 
(±0.079) 

0.497 
(±0.080) 

0.368 
(±0.071) 

FAR 
ERA-
Interim Ensemble

TRMM 
3B42 V6 JRA-25 

NCEP-
DOE CMORPH PERSIANN

0.400 
(±0.06) 

0.412 
(±0.078) 

0.412 
(±0.091) 

0.415 
(±0.056) 

0.417 
(±0.070) 

0.423 
(±0.103) 

0.54 
(±0.087) 

BIAS Ensemble
TRMM 
3B42 V6 JRA-25 

NCEP-
DOE PERSIANN CMORPH 

ERA-
Interim 

0.09 
(±0.46) 

0.09 
(±0.11) 

0.13 
(±0.14) 

0.13 
(±0.17) 

0.22 
(±0.23) 

0.23 
(±0.21) 

0.25 
(±0.33) 

r Ensemble JRA-25 
ERA-
Interim 

TRMM 
3B42 V6 CMORPH PERSIANN

NCEP-
DOE 

0.46 
(±0.09) 

0.43 
(±0.08) 

0.42 
(±0.08) 

0.41 
(±0.09) 

0.35 
(±0.10) 

0.22 
(±0.23) 

0.33 
(±0.17) 

RMSD Ensemble
TRMM 
3B42 V6 

ERA-
Interim JRA-25 CMORPH PERSIANN

NCEP-
DOE 

6.43 
(±1.32) 

6.56 
(±1.58) 

6.60 
(±1.55) 

6.62 
(±0.08) 

6.68 
(±0.10) 

7.54 
(±1.63) 

10.7 
(±2.47) 

MPDR CMORPH 
ERA-
Interim Ensemble JRA-25 PERSIANN

TRMM 
3B42 V6 

NCEP-
DOE 

-1.30 
(±12.24) 

-3.00 
(±8.10) 

-4.85 
(±7.98) 

5.33 
(±10.93) 

-7.79 
(±11.77) 

10.21 
(±6.97) 

42.80 
(±13.35) 

  




